N型半导体也称为电子型半导体,即自由电子浓度远大于空穴浓度的杂质半导体。
形成原理
掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素,当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素. 某些氧化物半导体,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度。
二、P型半导体
P型半导体一般指空穴型半导体,是以带正电的空穴导电为主的半导体。
形成
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。
特点:
(一)、N型半导体
由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
(二)、P型半导体
掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
雷锋网消息,10 月 29 日下午,GlobalFoundries(雷锋网按:GlobalFoundries 简称 GF,是一家来自美国的芯片代工企业)和台积电宣布,两家公司已经终止了彼此间的专利纠纷,并且签署了交叉授权协议。这项交叉授权协议可适用于彼此在全球范围内现有的半导体专利,以及在未来十年中将要申请的专利。然而,在过去的两个月里,这两家公司相处得并不愉快;要知道,他们都是在全球半导体代工领域举足轻重的玩家——根据拓墣产业研究院在 2019 年 6 月中旬发布的排行榜,全球芯片代工企业的前三名分别是台积电、三星、GF,其中台积电的市场份额为 49.2%,第二名三星的份额为 18%,而第三名 GF 的市场份额为 8.7%。因此,他们之间的产生关于专利的法律纠纷,可以称得上是半导体行业的大震荡。
今年 8 月 26 日,GF 在美国和德国对台积电发起诉讼,称台积电侵犯了其 16 项专利;这起诉讼分别在美国国际贸易委员会(ITC)、位于 Delaware 和德克萨斯州西部的美国联邦地区法院以及德国杜塞尔多夫和慕尼黑的地区法院发起。
雷锋网注:上图为 GF 对台积电的 16 项指控
其实,将台积电代工的半导体产品进口至美国和德国的,并不是台积电本身,而是台积电的客户。也就是说,GF 在美德两国对台积电提起诉讼,实际上是在寻求一个更广泛的禁令,即只要相关企业的产品中包含了本案所涉及的芯片,就不能进口至美国和德国。
如果 GF 的诉讼得到了法律的支持,众多消费者电子产品厂商和 科技 企业都要受到影响。根据 Tom's Hardware 的解读,本案所涉及的 20 家企业列表如下:
GF 在八月对台积电提起第一起诉讼时,台积电就称这些指控是毫无根据的,它将在法庭上为自己辩护。除此之外,台积电发言人 Elizabeth Sun 也针对这起诉讼进行了回应:
时至十月初,台积电驳回了 GF 的指控,并反过来对 GF 提起诉讼,指控其侵犯了台积电节点流程相关的 25 项专利。
总而言之,同为全球半导体代工领域的重要参与者,两家公司之间有着千丝万缕的联系,其中不乏在利益方面的碰撞。近日,两家公司握手言和,签订交叉许可协议也算得上是一件值得欣慰的事情;毕竟持续的诉讼的结果大概率是两败俱伤,更重要的是将精力倾注到产品和技术创新上。
锗、硅、硒、砷化镓、许多金属氧化物和金属硫化物等。其导电性介于导体和绝缘体之间的半导体称为半导体。半导体有一些特殊的性质。例如,可以利用半导体的电阻率与温度的关系来制作热敏元件(热敏电阻),用于自动控制;利用其光敏特性,可制成光敏元件用于自动控制,如光电池、光电池、光敏电阻等。
半导体还有一个最重要的特性。如果在纯半导体物质中适当掺入少量杂质,其电导率将增加数百万倍。这一特性可用于制造各种半导体器件,如半导体二极管、三极管等。
当半导体的一面做成P型区,另一面做成N型区时,在结附近形成一层具有特殊性质的薄层,一般称为PN结。图的上半部分分为P型半导体和N型半导体界面两侧的载流子扩散(用黑色箭头表示)。中间部分是PN结的形成过程,表示载流子的扩散效应大于漂移效应(蓝色箭头表示,红色箭头表示内建电场方向)。下部是PN结的形成。代表扩散和漂移之间的动态平衡。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)