拓展资料:
氧化镓的用途:
1、 氧化镓并不是很新的技术,多年前就有公司和研究机构对其在功率半导体领域的应用进行钻研,但就实际应用场景来看,过去不如SiC和GaN的应用面广,所以相关研发工作的风头都被后二者抢去了。而随着应用需求的发展愈加明朗,未来对高功率器件的性能要求越来越高,这使得人们更深切地看到了氧化镓的优势和前景,相应的研发工作又多了起来,已成为美国、日本、德国等国家的研究热点和竞争重点。而我国在这方面还是比较欠缺的。
2、 虽然氧化镓的导热性能较差,但其禁带宽度(4.9eV)超过碳化硅(约3.4eV),氮化镓(约3.3eV)和硅(1.1eV)的。由于禁带宽度可衡量使电子进入导通状态所需的能量。采用宽禁带材料制成的系统可以比由禁带较窄材料组成的系统更薄、更轻,并且能应对更高的功率,有望以低成本制造出高耐压且低损失的功率元件。此外,宽禁带允许在更高的温度下 *** 作,从而减少对庞大的冷却系统的需求。
3、 氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。这些是氧化镓的传统应用领域,而其在未来的功率、特别是大功率应用场景才是更值得期待的。
4、 氧化镓是一种新兴的功率半导体材料,其禁带宽度大于硅,氮化镓和碳化硅,在高功率应用领域的应用优势愈加明显。但氧化镓不会取代SiC和GaN,后两者是硅之后的下一代主要半导体材料。氧化镓更有可能在扩展超宽禁带系统可用的功率和电压范围方面发挥作用。而最有希望的应用可能是电力调节和配电系统中的高压整流器,如电动汽车和光伏太阳能系统。
氧化镓是一种无机化合物,化学式为Ga₂O₃。别名三氧化二镓,是一种宽禁带半导体,Eg=4.9eV,其导电性能和发光特性长期以来一直引起人们的注意。Ga₂O₃是一种透明的氧化物半导体材料,在光电子器件方面有广阔的应用前景 ,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。它还可以用作O₂化学探测器。
氧化镓
大小块之别。第四代半导体材料主要是以金刚石、氧化镓、氮化铝为代表的超宽禁带(UWBG)半导体材料,禁带宽度超过4eV,以及以锑化物(GaSb、InSb)为代表的超窄禁带(UNBG)半导体材料。在应用方面,超宽禁带材料会与第三代材料有交叠,主要在功率器件领域有更突出的特性优势;而超窄禁带材料,由于易激发、迁移率高,主要用于探测器、激光器等器件的应用。用氮化铝镓(AlGaN)为主要材料制造的深紫外光(deep ultraviolet, DUV)发光二极体(light-emitting diodes, LEDs)元件,其优异的光学性质和体积小的特性,逐渐取代水银灯和氙气灯,成为携带型生化检查系统、净水器、紫外光微影曝光机等的光源。藉由各种改善磊晶层结构品质的方法,可以进一步增进现阶段氮化铝镓(AlGaN)深紫外光发光二极体的光学性质。其中一个方法是在氮化镓(GaN)和氮化铝镓(AlGaN)的侧壁上引入一层纳米级氧化镓磊晶层。
本文将呈现如何应用宜特材料分析实验室的穿透式电子显微镜(TEM)分析技术鉴定俗称第四代半导体-氧化镓(Ga2 O 3)磊晶层的晶体结构,晶体形貌与组成。
为何氧化镓(Ga 2 O 3)被称为第四代半导体?
氧化镓(Ga2 O 3)被称为第四代半导体的原因是,其超宽能隙的特性,相较于相较于第三代半导体(化合物半导体)碳化硅(SiC)与氮化镓(GaN),将使材料能承受更高电压的崩溃电压与临界电场。
一、 氮化铝镓深紫外光发光二极体元件结构
用有机金属化学气相沉积(Metal-organic Chemical Vapor Deposition, MOCVD),制作的氮化铝镓深紫外光发光二极体薄膜元件之剖面图如图一(a)所示。先在蓝宝石(sapphire)基板上长一层氮化铝(aluminum nitride, AlN)做为缓冲层,减少后续氮化铝镓磊晶层的差排缺陷,长上二层不同铝浓度的氮化铝镓磊晶层后,再长上多重量子阱(multiple quantum well, MQW)层、电子阻挡层(electron-blocking layer, EBL)、氮化镓(gallium nitride, GaN)等纳米磊晶层。
接下来用微影制程将此MOCVD 制作的元件顶部蚀刻成如图一(b)所示的平台形状,然后在氧化气氛的高温中热处理,使氮化铝镓磊晶层侧壁和氮化镓表面生成氧化物,最后再用磁控溅镀(magnetron sputtering)法镀上一层100 纳米厚的高纯度二氧化硅,如图1一(c)所示。
图一:氮化铝镓(AlGaN)深紫外光发光二极体元件的剖面图示意图。(a)MOCVD成长的二极体元件;(b)用微影制程蚀刻元件顶部形成平台后;(c)经氧化热处理+ SiO2 镀层后。(来源:宜特科技)
二、 TEM 影像与电子绕射分析鉴定反应生成相
先用聚焦离子束(focus ion beam, FIB)在元件顶部选定的位置切割,制成横截面型TEM(cross-section TEM, X-TEM)试片,然后对一系列不同热处理的氮化铝镓试片进行TEM/STEM 影像分析和电子绕射,目的在鉴定氮化铝镓磊晶层侧壁和氮化镓表面形成的氧化物为何物。
图二显示二张中低倍率的TEM 明场像,分别为原始氮化铝镓试片与900ºC,20 分钟热处理的氮化铝镓试片的横截面结构。仔细比较图二a 与图二b,可以发现热处理后的试片,在氮化镓层顶部和氮化铝镓层侧壁共有三个新相(phases)产生,如图二b 中标示1、2、3 的区域。
图三中比较900ºC,20 分钟热处理的氮化铝镓试片的STEM 明场像和环形暗场像。综合图二和图三中的TEM 与STEM 影像,宜特材料分析实验室初步归纳出STEM 环形暗场像是此材料系统的最佳影像分析技术。我们在将影像倍率再往上提高,进一步确认STEM 暗场像在此材料系统的适宜性。
如图四所示,STEM 环形暗场像,明显比STEM 明场像更清楚区分各新形成的生成物。从以上这些初步的影像资料中,生成物影像明暗对比的变化特性,推断第一相和第三相为多晶,且晶粒大小只有数纳米,而第二相有可能为单晶结构。
图二:TEM 明场像显示氮化铝镓深紫外光发光二极体元件的横截面结构。(a)MOCVD生长后,热处理前;(b)900ºC/20 分钟热处理后。(来源:宜特科技)
图三:900ºC/20 分钟热处理后,氮化铝镓深紫外光发光二极体元件的横截面结构。(a) TEM明场像;(b) STEM环形暗场像。(来源:宜特科技)
图四:二组中高倍率STEM 影像显示900ºC/20 min,热处理后二极体元件顶部与侧壁的氧化层结构。(a)&(b)分别为GaN 顶部与侧壁的氧化层结构的STEM 明场像和环形暗场像;(c)&(d)分别为AlGaN 侧壁的氧化层结构STEM 明场像和环形暗场像。(来源:宜特科技)
图五则显示一组选区绕射图案(selected area diffraction pattern, SADP)和一低倍率STEM 明场像。这些SADPs 分别对应氮化镓层、氮化铝镓层、和三个生成物(图5a)。氮化镓层和氮化铝镓层都是磊晶层(epitaxial layer),对应的SADPs 指出TEM 观察方向都是[1 1 -2 0] 极轴(zone axis)方向。三个生成物的SADPs 目前尚未完全解出,但是其形貌都是单一组点状绕射图案,而且非常类似。此种形式的SADPs 指出该分析区域是单晶,而且这些单晶的某个晶向都和氮化镓层(氮化铝镓层)的[0002] 晶向逆时针偏转约10 度。这个从SADPs 的晶体分析结果和从图三与图四影像资料推论的晶体结果有所矛盾。
图五: 900ºC/20 分钟热处理后,氮化铝镓试片的低倍率STEM 明场像,与磊晶层的选区绕射图案。(a)低倍率STEM 明场像;(b)GaN 的SADP,z = [11 -2 0];(c)AlGaN 的SADP,z = [11 -2 0];(d)第1 相生成物的SADP;(e)第2 相生成物的SADP;(f)第3 相生成的SADP。
针对前述TEM/STEM 分析结果的矛盾,我们进行临场TEM/STEM 影像和电子绕射交互分析观察,确定在氮化镓层上方/侧壁和氮化铝镓侧壁,经高温热处理后产生的生成物都是单晶。第一相生成物和第三相生成物内的明暗变化,并非因为晶粒产生的绕射对比,而是试片本身密度变化产生的原子序对比。
从更高倍率的STEM 环形暗场像,如图六所示,我们更清楚辨认生成物为多孔性结构,暗色的区域(明场像中亮的区域)是空孔。第一相生成物空孔的尺寸明显数倍大于第三相生成物空孔的尺寸,第二相生成物算是致密的单晶结构,但其内仍有几个大空孔,其中一个如图六中白色箭头指处。造成第一相生成物和第三相生成物为多孔性结构的原因,推测可能是热处理温度过高,氧和镓与铝的交互扩散速率高于生成物原子堆积速率所导致的结果。
一般来说,用电子绕射图案解析晶体结构,必须从数个极轴方向的SASPs 推算才能得到确定的结果。由于目前只有一个极轴方向的SASPs,很难从这些有限的SADPs 中明确地推算出生成物的晶体结构。从SASP 模拟分析中发现b-Ga2 O 3 的[0 1 0] SADP 和图五(d, e, f)中的SADP 很接近,因此初步推断在GaN 层上的生成物有可能是b-Ga 2 O 3,而在AlGaN 层上的生成物则有可能是b-(Al x Ga 1-x)2 O 3。由于b-Ga 2 O 3 是单斜晶体,其SADP 的分析工作将会复杂许多。
图六:900ºC/20分钟热处理后,氮化铝镓试片的高倍率STEM 环形暗场像,解析生成物的显微结构形貌。白色箭头指处是一较大的空孔。(来源:宜特科技)
三、 STEM/EDS 分析-自我校正定量分析
图七显示一组由STEM/EDS 能谱影像(spectrum image)技术,获得的氮化镓和生成物之元素映像图(elemental maps)。这些元素映像图显示生成物的组成元素只有氧和镓,意指此生成物是镓氧化物。再用EDS 软体从二氧化硅层拉一垂直相界(phase boundary)的直线(图八(a)中的浅蓝色箭头),通过氧化物到达氮化镓层,算出沿此直线各元素的浓度变化。
图八(b)显示计算出来的结果,此计算结果是由TEM 的EDS 软体用内存的K 因子(K factors),进行成份定量分析。这样EDS 定量分析方法称为无标准试片定量分析法(standardless quantitative analysis),此方法计算的结果目前已广泛被各种科学与工程类的论文期刊接受。
在图八(b)的EDS 直线浓度变化曲线(line profiles)内,对应氧化物1B 的区段内,找出一平坦的区段,推算氧化物1B 的成份,得到该氧化物的组成元素比(O/Ga)为1.23,相当于化学式为Ga5 O 6。这是EDS 侦测器接收从试片发出的元素X-光讯号,加上资料库内的K因子后计算出的氧化物成分,然而文献中没有这种成份的氧化镓。
当定量分析的元素包含碳、氮、氧等轻元素时,即使TEM 试片属薄片(thin foil)型试片,吸收效应仍然相当显著,只是经常被忽略,造成相当大的误差而不知觉。仔细检查图八(b)可以发现,在直线浓度变化曲线的左侧二氧化硅区段中O/Si 比值小于2,而右侧氮化镓区段中N/Ga 比值明显小于1。利用这二侧已知成份的二氧化硅层和氮化镓层,对此直线浓度变化曲线做自我校正(self-calibration)修正。
经修正后的直线浓度变化曲线如图八(c)所示,此时从相同平坦区段推算的组成元素比(O/Ga)为1.53,相当于化学式为Ga2 O 3,符合文献中报导的氧化镓组成,也符合化学键价数的搭配。
在TEM(STEM)/EDS 成份定量分析中,利用待分析物周围已知成份的相,做自我校正计算,进一步提高EDS 定量分析的准确度称为EDS 自我校正定量分析法(self-calibration EDS quantitative analysis),此技术是宜特实验室自行开发的TEM 材料成份分析技术之一,校正后的结果比只经由EDS 内建软体的计算结果准确许多。
主要的原因在于所有的TEM/EDS 内建软体都不考虑元素X-光在TEM 试片内的吸收效应。然而当EDS 定量分析牵涉到碳、氮、氧等轻元素时,因这些元素的X-光能量很小,吸收效应产生的误差就变成相当明显。对于含轻元素的化合物,透过EDS 自我校正定量分析法,宜特材料分析实验室的TEM/EDS 定量分析结果比其他TEM 分析实验室更为准确。
图七:900ºC/20 分钟热处理试片的氮化镓和氧化物的元素映像图。(a)分析区域的STEMBF 影像;(b)镓元素映像图;(c)氮元素映像图;(d)氧元素映像图;(e)硅元素映像图;(f)综合元素映像图。(来源:宜特科技
图八:900ºC/20 分钟热处理试片氮化镓和氧化物的EDS 直线浓度变化曲线。(a)分析区域的STEM BF影像;(b)EDS 内建程式计算的直线浓度变化曲线;(c)经自我校正定量法校正后的直线浓度变化曲线。
第四代半导体材料氧化镓、金刚石、氮化铝等,主要是指氧化镓。氧化镓、金刚石也是被BSI限制出口的材料。
氮化铝和金刚石主要问题是掺杂比较难,氧化镓的P型掺杂也比较难。相比第三代的材料,氧化镓能做成大的块状晶体,同尺寸下是碳化硅成本的1/3或更低。
氧化镓没有P型,就无法制造高性能的MOS管,这是影响市场应用的地方。目前,国内P型有一定的解决方案,还不成熟。日本在氧化镓方面技术领先,主要是NCT、Flosfia公司。
氧化镓P型一旦突破,很大程度上可以替代碳化硅。难在难在工艺。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)