转自:https://zhuanlan.zhihu.com/p/297965743
【嵌牛鼻子】射频前端 滤波器
【嵌牛提问】中国企业如何克服“拿来主义”,快速迭代发展?
【嵌牛正文】
射频前端(RFFE, Radio Frequency Front-End)芯片是实现手机及各类移动终端通信功能的核心元器件,全球市场超过百亿美金级别。过去10年本土手机的全面崛起,为本土射频前端产业的发展奠定了坚实的产业基础;而5G在中国的率先商用化,以及全球贸易环境的变化,又给本土射频行业加了两捆柴火。射频前端芯片产业在我国也已经有了15年以上的发展历史,创新和创业活动非常活跃,各类企业数十家,也是市场和资本高度关注的领域。本文作者有幸在射频芯片行业从业11年,从2G时代做到今天的5G,也在外企、民企、国企都工作过,直接开发并大量量产过射频的每一类型产品。这篇文章总结了作者与一些行业朋友近些年的讨论,尝试对射频模组产品的技术市场及商业逻辑进行梳理。同时,本土射频发展了十余年,竞争是行业主线,合作与友谊是非常稀缺的资源。本文将会重点分享“模组化”的相关知识,也是希望更多的本土厂商去通过“合作”分享模组化的巨大机遇。
引言
根据魏少军教授在“2020全球CEO峰会”的《人间正道是沧桑-关于大变局下的战略定力》主题演讲,统计得出对中国市场依赖度最高(依营收占比计算)的美国公司,如下图。我们可以看到SKYWORKS、Qualcomm、Qorvo、Broadcom这四家美国射频巨头(其中SKYWORKS和Qorvo以射频业务为主;Qualcomm和Broadcom包含了射频业务)恰好占据了排行榜前4名。
射频前端的国际情况
射频前端技术主要集中在滤波器(Filter)、功率放大器(PA, Power Amplifier)、低噪声放大器(Low Noise Amplifier)、开关(RF Switch)。目前全球射频市场由引言提到的四家美国射频公司Skyworks、Qualcomm、Qorvo、Broadcom与日本Murata这五大射频巨头寡占。
五家射频巨头在PA与LNA等市场占有率超过九成。滤波器方面,则分为声表面波(SAW, Surface Acoustic Wave)与体表面波(BAW, Bulk Acoustic Wave)滤波两种主要技术。目前,SAW滤波器市场由Murata占据一半,Skyworks约10%,Qorvo约4%,其余则被太阳诱电、TDK等大厂瓜分。BAW滤波器的市场则由美国企业占据9成市场。
由此可见,射频前端是巨大的市场,能容纳5家国际巨头持续发展。国际巨头的技术跨度大,模组化能力强;模组化产品是国际竞争的主赛道。每家巨头都拥有BAW技术或其替代方案。
射频前端的国内情况
关于射频前端的国内情况有很多文章都曾提到,这里不赘述,只给几个共识比较多的结论:
1.本土公司普遍以分立器件为主要方向;分立器件是当前本土竞争的主赛道。2.本土公司缺乏先进滤波器技术及产品,模组化能力普遍不强。
5G模组化挑战及机遇的来源
PCB布线空间及射频调试时间的挑战,下沉到了入门级手机,打通了国产模组芯片的迭代升级路径。
射频模组芯片,不是一个新生的产品系列。事实上,射频模组芯片的使用几乎与LTE商业化同时发生。过去10年内,各种复杂的射频模组已经普遍应用在了各品牌的旗舰手机中;与此同时,在大量的入门级手机上,分立器件的方案也完全能够满足各方面的要求。因此在过去10年就出现了泾渭分明的两个市场:旗舰机型用模组方案;入门机型用分立方案。模组方案要求“高集成度和高性能”,因而价格也很高;而分立方案要求“中低集成度和中等性能”,售价相对而言就低不少。两种方案之间存在巨大的技术和市场差异,我们可以把这个称作4G时代的“模组鸿沟”。
4G时代的“模组鸿沟”
5G的到来,彻底改变了这个状况。
相比于4G入门级手机的2~4根天线,5G入门级手机的天线数目增加到了8~12根;需要支持的频段及频段组合也在4G的基础上显著增加。大家知道,射频元器件的数目,与天线数目及频段强相关,这就意味着射频元器件的数目出现了急剧地增长。与此同时,由于结构设计的要求,5G手机留给射频前端的PCB面积是无法增加的,因此分立方案的面积大大超过了可用的PCB面积。这是空间带来的约束。
还有一个挑战,来自于调试时间。4G使用分立器件方案的射频调试时间,一般在一周以内。随着5G射频复杂度的显著提升,假设使用分立方案,可能会带来3~5倍的调试时间增加;从成本上来讲,还需要消耗更贵的5G测试设备、熟悉5G测试的工程师资源。如果使用模组,大部分的调试已经在模组设计过程中在内部实现了,调试工作量将更多地移到软件端,因此调试效率大大提升。这是时间带来的约束。
时间和空间的约束,强烈而普遍。因此在入门级5G手机中,就天然出现了对“中低性能和高集成度”模组的需求,与旗舰手机的“中高性能和高集成度”模组形成了管脚统一。既然都需要高集成度的模组,只是指标要求不一样,这样国产的模组芯片就可以从“中低性能”(5G入门级手机)向“中高性能”(5G旗舰手机)迭代演进。因此,“模组鸿沟”便被填平了。
任何事情都是两面的。“模组鸿沟”被填平以后,分立市场的空间也出现了风险;对专长于分立芯片的本土企业来讲,也需要巨大的资源和力量去在模组产品中找到自身的位置;如果不能突破,就会在不远的未来进入到瓶颈阶段。
在5G的早期阶段,目前市场上也出现了一种混合方案,即用分立器件和模组混搭的方案。这个方案的出现,有很多客观的原因,其中就包括历史上形成的“模组鸿沟”。这种方案是妥协的产物,牺牲了一些关键指标,而且面积上也做了让步。如果没有专注做国产化模组的芯片公司,就不会有优秀的国产模组芯片;如果没有优秀的国产模组芯片,模组方案的价格永远高高在上。
滤波器技术简要分类
BAW 滤波器: 即体声波滤波器。具有插入损耗小、带外衰减大等优点,同时对温度变化不敏感,BAW滤波器的尺寸大小会随着频率升高而缩小,因此尤其适用于1.7GHz以上的中高频通信,在5G与sub-6G的应用中有明显优势。
SAW滤波器: 即声表面波滤波器。采用石英晶体、铌酸锂、压电陶瓷等压电材料,利用其压电效应和表面波传播的物理特性而制成的一种滤波专用器件。SAW滤波器具有性能稳定、使用方便、频带宽等优点,是频率在1.6GHz以下的应用主流。但存在插入损耗大、处理高频率信号时发热问题严重等缺点,因此在处理1.6GHz以上的高频信号时适用性较差。
LC型滤波器: 即电感电容型滤波器。LC滤波器一般是由滤波电容、电抗和电阻适当组合而成,电感与电容一起组成LC滤波电路。
射频模组简要分类
射频前端模组是将射频开关、低噪声放大器、滤波器、双工器、功率放大器等两种或者两种以上的分立器件集成为一个模组,从而提高集成度和性能,并使体积小型化。根据集成方式的不同,主集天线射频链路可分为:FEMiD(集成射频开关、滤波器和双工器)、PAMiD(集成多模式多频带PA和FEMiD)、LPAMiD(LNA、集成多模式多频带PA和FEMiD)等;分集天线射频链路可分为:DiFEM(集成射频开关和滤波器)、LFEM(集成射频开关、低噪声放大器和滤波器)等。
主集天线射频链路
分集天线射频链路
射频前端的“价值密度”
既然5G手机PCB面积是受限制的资源,同时我们需要在5G手机内“挤入”更多的射频功能器件,因此我们评价每一类型射频器件时,需要建立一个参数来进行统一描述,作为反映其价值与PCB占用面积的综合指标。
ValueDensity=(平均销售价格ASP)/(芯片封装大小)
接下来,我们使用VD值这个工具,分别分析一下滤波器、功率放大器、射频模组三类产品的情况。
1. 滤波器的VD值
首先说明一点,由于通常情况下滤波器还需要外部的匹配电路,实际的VD值比器件的VD值还要再低一些。我们先忽略这个因素。根据以上的数据,我们可以得到一些结论:从LTCC到四工器,VD值持续增加,从1.2到10.0,增加比较快速。
2. 功率放大器的VD值
根据以上数据,也可以看到: a) 从2G到4G,VD值从0.6增加到了1.5。b) 4G向CAT1演进的小型化产品,以及向HPUE或者Phase5N演进的大功率PA,VD值增加到了2附近。
3. 射频模组的VD值
根据以上数据,可以观察到: a) 接收模组普遍的VD值在5附近;b) 接收模组中的小封装H/M/L LFEM,VD值非常突出,大于10;c) 发射模组(除FEMiD以外),VD值在4~6之间;d) FEMiD具有发射模组最高的VD值。因此当FEMiD与VD值较低的MMMB PA混搭时,也能达到合理的PCB布图效率。
表格汇总的同时,我们也增加了技术国产化率和市场国产化率的参考数据。一般来讲,市场国产化率较低的、或者技术国产化率远远超过国产化率数字的细分品类,VD值会虚高一些。在本土相应产品市占率提高以后,未来还会有比较明显的降价空间。
射频发射模组的五重山
发射1: PA与LC型滤波器的集成,主要应用在3GHz~6GHz的新增5G频段,典型的产品是n77、n79的PAMiF或者LPAMiF。这些新频段的5GPA设计非常有挑战,但由于新频段频谱相对比较“干净”,所以对滤波器的要求不高,因此LC型的滤波器(IPD、LTCC)就能胜任。综合来看,这类产品属于有挑战但不复杂的产品,其技术和成本均由PA绝对掌控。
发射2: PA与BAW(或高性能SAW)的集成,典型产品是n41的PAMiF或者Wi-Fi的iFEM类产品,频段在2.4GHz附近。这类产品的频段属于常见频段,PA部分的技术规格有一定挑战但并不高。由于工作在了2.4GHz附近,频段非常拥挤,典型的产品内需要集成高性能的BAW滤波器来实现共存。这类产品由于滤波器的功能并不复杂,PA仍有技术控制力;但在成本方面,滤波器可能超过了PA。综合来讲,这类产品属于有挑战但不复杂的产品,PA有一定的控制力。
发射3: LowBand发射模组。LB (L)PAMiD通常集成了1GHz以下的4G/5G频段(例如B5、B8、B26、B20、B28等等),包括高性能功率放大器以及若干低频的双工器;在不同的方案里,还可能集成GSM850/900及DCS/PCS的2GPA,以进一步提高集成度。低频的双工器通常需要使用TC-SAW技术来实现,以达到最佳的系统指标。根据系统方案的需要,如果在LB PAMiD的基础上再集成低噪声放大器(LNA),这类产品就叫做LB LPAMiD。可以看到,这类产品的复杂度已经比较高:PA方面,需要集成高性能的4G/5GPA,有时候还需要集成大功率的2GPA Core;滤波器方面,通常需要3~5颗使用晶圆级封装(WLP)的TC-SAW双工器。总成本的角度来看(假设需要集成2GPA),PA/LNA部分和滤波器部分占比基本相当。LB (L)PAMiD是需要有相对比较平衡的技术能力,因此第三级台阶出现在了PA和Filter的交界处。
发射4: FEMiD。这类产品通常包含了从低频到高频的各类滤波器/双工器/多工器,以及主通路的天线开关;并不集成PA。FEMiD产品通常需要集成LTCC、SAW、TC-SAW、BAW(或性能相当的I.H.PSAW)和SOI开关。村田公司定义了这类产品,并且过去近8年的时间内,占据了该市场的绝对主导权。三星、华为等手机大厂,曾经或正在大量使用这类产品在其中高端手机中。如前文所述,有竞争力的PAMiD供应商主要集中在北美地区;出于供应链多样化的考虑,一些出货量非常大的手机型号,就可能考虑使用MMMB(Multi-Mode Multi-Band) PA加FEMiD的架构。MMMB PA的合格供应商广泛分布在北美、中国、韩国,而日本村田的FEMiD产能非常巨大(主要表现在LTCC和SAW)。又如前文所述,FEMiD的VD值非常高,整体方案的空间利用率也在合理范围内。
发射5: M/H (L)PAMiD。这类产品是射频前端最高市场价值也是综合难度最大的领域,是射频前端细分市场的巅峰。M/H通常覆盖的频率范围是1.5GHz~3.0GHz。这个频段范围,是移动通信的黄金频段。最早的4个FDDLTE 频段Band1/2/3/4在这个范围内,最早的4个TDD LTE频段B34/39/40/41在这个范围内,TDS-CDMA的全部商用频段在这个范围内,最早商用的载波聚合方案(Carrier Aggregation)也出现在这个范围(由B1+B3四工器实现),GPS、Wi-Fi 2.4G、Bluetooth等重要的非蜂窝网通信也都工作在这个范围。可以想象,这段频率范围最大的特点就是“拥挤”和“干扰”,也恰恰是高性能BAW滤波器发挥本领的广阔舞台。由于这个频率范围商用时间较长,该频率范围内的PA技术相对比较成熟,核心的挑战来自于滤波器件。
先解释一下为什么这段频率是移动通信的黄金频率。在很长的发展过程中,移动通信的驱动力来自移动终端的普及率,而移动终端普及的核心挑战在于终端的性能和成本。过高的频率,例如3GHz以上、10GHz以上,半导体晶体管的特性下降很快,很难做出高性能;而过低的频率,例如800MHz以下、300MHz以下,需要天线的尺寸会非常巨大,同时用来做射频匹配的电感值和电容值也会很大,在终端尺寸的约束下,超低频段的射频性能很难达到系统指标。简而言之,从有源器件(晶体管)的性能角度出发,希望频率低一些;从无源器件(电容电感和天线)的性能角度出发,希望频率高一些。有源器件与无源器件从本质上的冲突,到应用端的折衷,再到模组内的融合,恰如两股强大的冷暖洋流,在人类最波澜壮阔的移动通信主航道上,相汇于1.5~3GHz的频段,形成了终端射频最复杂也最有价值的黄金渔场:M/HB (L)PAMiD。多么地美妙!
这类高端产品的市场,目前主要由美商Broadcom、Qorvo、RF360等厂商占据。下图是Qorvo公司在其官方公众号上提供的芯片开盖分析。可以看到,该类产品包含10颗以上的BAW,2~3颗的GaAs HBT,以及3~5颗SOI和1颗CMOS控制器,具有射频产品最高的技术复杂度。该类产品通常需要集成四工器或者五/六工器这类超高VD值的器件。
M/H LPAMiD开盖图
射频接收模组的五重山
接收模组的五重山模型,如上图所述。
接收1: 使用RF-SOI工艺在单颗die上实现了射频Switch和LNA。虽然仅仅是单颗die,但从功能上也属于复合功能的射频模组芯片。这类产品主要的技术是RF-SOI,在4G和5G都有一些应用。
接收2 :使用RF-SOI工艺实现LNA和Switch的功能,然后与一颗LC型(IPD或者LTCC)的滤波器芯片实现封装集成。LC型滤波器适合3~6GHz大带宽、低抑制的要求,适用于5G NR部分的n77/n79频段。这类产品也是SOI技术主导,主要应用在5G。
接收3: 从接收3往上走,接收模组开始需要集成若干SAW滤波器,集成度越来越高。通常需要集成单刀多掷(SPnT)或者双刀多掷(DPnT)的SOI开关,以及若干通路支持载波聚合(CA)的SAW滤波器。封装方式上,由于“接收3”的集成程度还不极限,因此有多种可能的路径。其中国际厂商的产品主要以WLP技术为主,除了在可靠度及产品厚度方面有优势,主要还是可以在更高集成度的其他产品中进行复用。
接收4: 这类产品叫做MIMO M/H LFEM。主要是针对M/H Band的频段(例如B1/3/39/40/41/7)应用了MIMO技术,增加通信速率,在一些中高端手机是属于入网强制要求。看起来通信业对M/H这个黄金频段果然是真爱啊。技术角度出发,这类产品以RF-SOI技术实现的LNA加Switch为基础,再集成4~6个通路的M/H高性能SAW滤波器。国际厂商在这些频段已经开始普遍使用TC-SAW的技术,以达到最好的整体性能。
接收5: 接收芯片的最高复杂度,就是H/M/L的LFEM。这类产品以非常小的尺寸,实现了10~15路频段的滤波(SAW Filter)、通路切换(RF-Switch)以及信号增强(LNA),具有超高的Value Density值(10左右),在5G项目上能帮助客户极大地压缩Rx部分占用的PCB面积,把宝贵的面积用在发射/天线等部分,提升整体性能。这类产品需要的综合技能最高,也基本必须要用WLP形式的先进封装方式才能满足尺寸、可靠度、良率的要求。
总结
1.射频模组的核心要求是多种元器件的小型化及模组集成。
2.无论是发射模组还是接收模组,纯5G的模组是困难但不复杂,最有挑战也最具价值的是4G/5G同时支持的高复杂度模组。
半导体的发现实际上可以追溯到很久以前。
1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
扩展资料:
人物贡献:
1、英国科学家法拉第(MIChael Faraday,1791~1867)
在电磁学方面拥有许多贡献,但较不为人所知的,则是他在1833年发现的其中一种半导体材料。
硫化银,因为它的电阻随着温度上升而降低,当时只觉得这件事有些奇特,并没有激起太大的火花;
然而,今天我们已经知道,随着温度的提升,晶格震动越厉害,使得电阻增加,但对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。
2、德国的布劳恩(Ferdinand Braun,1850~1918)。
注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。
但直到1906年,美国电机发明家匹卡(G. W. PICkard,1877~1956),才发明了第一个固态电子元件:无线电波侦测器(cat’s whisker),它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。
在整流理论方面,德国的萧特基(Walter Schottky,1886~1976)在1939年,于「德国物理学报」发表了一篇有关整流理论的重要论文,做了许多推论,他认为金属与半导体间有能障(potential barrier)的存在,其主要贡献就在于精确计算出这个能障的形状与宽度。
3、布洛赫(Felix BLOCh,1905~1983)
在这方面做出了重要的贡献,其定理是将电子波函数加上了周期性的项,首开能带理论的先河。
另一方面,德国人佩尔斯(Rudolf Peierls, 1907~ ) 于1929年,则指出一个几乎完全填满的能带,其电特性可以用一些带正电的电荷来解释,这就是电洞概念的滥觞;
他后来提出的微扰理论,解释了能隙(Energy gap)存在。
参考资料来源:百度百科-半导体
根据产业信息网发布的数据,预计在2025年物联网连接数达到251亿台,复合增长率达到15.3%。而物联网终端设备的增长,也刺激了相应的市场需求。据IDC数据显示,2020年至2022年,全球WiFi和蓝牙芯片的出货量分别为91亿颗、98亿颗,以及102亿颗,2017年至2022年间的复合增长率约为6.3%。随着5G、物联网的发展,通信芯片也将迎来新的局面,无论是市场需求的提升,还是政策红利等的释放,都会让这一领域受到更大的关注。对于国产通信芯片企业而言,而是难得的“转折点”。事实上,近年来,国产通信芯片企业正紧跟通信技术的发展步伐,紧抓市场空白不断打磨自身技术及产品,逐渐有了可以和国际巨头争夺市场的机会。
由国内领先的半导体电子信息媒体芯师爷举办的“2022年硬核中国芯”评选,汇聚了百余家中国半导体芯片产业的知名企业、潜力企业。本文精选了今年参评的近20款通讯类芯片产品,以期为市场提供优质产品选型攻略。
以下产品排名不分先后
智联安
智联安成立于2013年,是一家专业从事蜂窝物联网通信芯片研发的IC设计企业。自创立以来,智联安始终坚持核心技术自主创新,公司现阶段主要产品为5G NB-IoT、4G LTE及5G NR蜂窝通信芯片。
5G高精定位芯片
MK8510
MK8510为首款5G高精度低功耗定位芯片,采用28nm先进工艺,符合国内三大运营商在5G NR FR1频段的要求,单芯片集成MCU、基带处理器、模拟单元、射频及电源管理模块,真正实现5G NR下一代蜂窝物联网单芯片定位解决方案。
芯翼信息科技
芯翼信息科技成立于2017年,目前,公司已构建了属于自己的中低速率物联网芯片版图,并在智慧城市、智慧物流、智慧农业、可穿戴设备等领域广泛落地。其自主研发的超高集成度5G NB-IoT系统单芯片SoC XY1100已率先推出并实现规模商用,渗透到水表、燃气表、定位追踪、智慧城市等消费终端领域。
5G NB-SoC
XY1200
芯翼信息科技XY1200作为新一代NB-IoT高集成度单芯片,具有超高集成度、超低功耗、支持免32K晶振设计、免校准设计、丰富的安全引擎等优势,将于2022年下半年推出,面向智能表计、智能烟感、定位追踪等应用领域。其CPU主频可调范围更大,AP接近专业级MCU功耗水平;Memory配置更多,方便客户使用,兼顾成本和灵活性。
5G AIoT SoC
XY2100S
芯翼信息科技自主研发的XY2100S,是业界首次把通讯、低功耗MCU(计算)、传感器模拟前端(感知)等多种功能集成在单芯片(SoC)。作为全球首颗公共事业(表计+烟感)行业专用NB-IoT SoC,XY2100S集成低功耗MCU,解决了MCU模式下的功耗瓶颈,主要面向智能表计、烟感等应用领域。
桃芯科技
桃芯科技成立于2017年,是一家物联网终端芯片提供商,公司专注于BLE 5.0及以上通信协议技术,始终坚持自主研发关键核心技术,以品质为基石,在国内率先推出拥有自主知识产权的BLE 5.0/5.1/5.3芯片,打破了由国际知名蓝牙厂商垄断中高端市场的局面。
ING916X系列
ING916X系列芯片拥有自主知识产权完整协议栈技术、混合信号SOC及低功耗技术、蓝牙+定位技术,可广泛应用于AoA/AoD定位、超低功耗传感器应用、汽车、Mesh自组网、HID、智能电网、智能表计、工业智能、智慧农业等领域。
方寸微
方寸微成立于2017年,公司致力于国产高端密码处理器、高性能网络安全芯片、高速接口控制芯片的研发、设计和销售。作为网络安全SoC处理器的核心供应商,方寸微产品已大量商用于各类信息安全终端,在集成电路架构设计、安全密码算法、核心技术自主可控、大规模量产及品质管控等综合能力上具有国内领先的优势。
国产高速USB3.0控制器芯片T630
T630芯片集成国产32位高性能RISC CPU,支持USB3.0、MUXIO、I2C等多种接口,可快速在嵌入式主板上与FPGA/CPU进行对接通讯,作为USB3.0外扩芯片与PC或服务器实现数据传输。可广泛应用于视频采集卡、视频会议摄像头、监控摄像头、数字摄录机、工业照相机、测量和测试设备、医疗成像设备、打印机、扫描仪、指纹采集终端等众多电子产品。
翱捷科技
翱捷科技是一家提供无线通信、超大规模芯片的平台型芯片企业。公司专注于无线通信芯片的研发和技术创新,同时拥有全制式蜂窝基带芯片及多协议非蜂窝物联网芯片设计与供货能力,且具备提供超大规模高速SoC芯片定制及半导体IP授权服务能力。目前,已成为国内少数同时在“5G+AI”领域完成技术和产品突破的企业。公司各类芯片产品可应用于以手机、智能可穿戴设备为代表的消费电子市场及以智慧安防、智能家居、自动驾驶为代表的智能物联网市场。
ASR595X
ASR595X是一款低功耗、高性能、高度集成的Wi-Fi 6+Bluetooth LE 5.1 combo SoC芯片。其支持目前最新的Wi-Fi 6协议,也支持WPA3、OFDMA、TWT、MU-MIMO、LDPC等关键功能,同时配合内部集成的BLE 5.1协议提供更便捷和快速的BLE配网方式。既可作为主控芯片使用,也可作为WLAN连接的功能芯片搭配外部主控。搭载芯来科技RISC-V处理器内核,支持鸿蒙OS、阿里OS、FreeRTOS等多 *** 作系统。可广泛适用于如智能照明、安全、遥控、电器等各类应用,家庭自动化、可穿戴式电子产品、网状网络、工业无线控制、传感器网络等产品。
ASR1803
ASR1803是翱捷科技新一代LTE Cat.4芯片,采用了22nm先进成熟工艺;集成了ARM Cortex A7处理器;支持4层1阶PCB;支持RTOS和Linux *** 作系统;所占内存小,可为客户不同产品的开发提供灵活选择。为使客户产品能有更快的boot速度,该芯片支持全新的动态电压调节技术及QSPI NOR/NAND Flash,能有效降低工作电压、降低功耗。该芯片可广泛应用于民用及工业与行业应用当中。
ASR1606
ASR1606作为翱捷科技新一代LTE Cat.1 bis芯片,采用了更高集成度的单芯片SoC方案、先进成熟的22nm制程工艺并且集成了主频达到624MHz的ARM Cortex-R5处理器以及Modem通信单元、Codec音频单元、PSRAM+Flash存储单元和PMIC,使得芯片封装尺寸更小、性能更强大。可广泛应用于各类标准数据模块,并且在Tracker、共享设备、电网、车联网及各种形式智能硬件等领域拥有出色表现。
北极芯
北极芯成立于2019年,是一家以RISC-V指令集架构为基础,自主研发异构网络融合通信标准IARV-IPRF架构,专注于IA-AIIPD通信芯片、IA-3DIPD存储芯片、智能应用处理器SoC的设计公司。北极芯以“自由、开放、创新”为理念,通过资源整合、技术与业务模式创新,构建完整的“信息技术应用创新生态”产业链,以提升中国基础软硬件核心竞争力。
AIoT通信芯片/IA-RF
北极芯AIIPD芯片/IA-IPRF是一款兼容多协议、宽频宽带半双工/全双工射频无线收发器芯片,集成两个独立的可编程频率合成器。该芯片的频率、带宽及增益可编程能力使其成为多种收发器应用的理想选择。该收发器既集成RF前端与灵活的混合信号基带部分为一体,也集成可编程时钟产生模块,使ADC&DAC采样可编程。
芯象半导体
芯象半导体成立于2014年,公司专注于高集成度数模混合SoC通信芯片设计,目前已形成较为完善的通信类、主控类以及计算处理类芯片产品线。主要应用领域为用电信息采集、低压智能配电物联网、数字光伏管理,智能用电管理等。
SIG800E
SIG800E是一款HPLC+HRF双模方案级SoC芯片,算力、连接一体化架构,适配未来数字能源领域对边缘算力需求的强劲增长。该芯片可双模通道独立工作,融合自组网,独立完成主控、拓扑识别、模拟量采集、HPLC+HRF双模通信功能。在配网自动化、分布式光伏发电、智能家居等领域,可帮助客户打造算力领先,成本极致的一站式解决方案。
移芯通信
移芯通信成立于2017年,公司专注于蜂窝移动通信芯片及其软件的研发和销售,所有核心技术和IP全部自研,包含算法&架构、射频、基带、SoC、协议栈软件、平台&应用软件和硬件方案,致力于设计世界领先的蜂窝物联网芯片。自成立以来,移芯通信已向市场推出两款NB-IoT芯片、一款Cat.1bis芯片,均已量产。目前,移芯通信已完成累计超15亿元人民币融资。
NB-IoT芯片
EC616S
EC616S为业内首颗外围仅需18颗器件的超高集成NB-IoT芯片,其采用QFN52封装,芯片尺寸仅6*6mm,支持NB最小模组尺寸10*10mm设计。EC616S主要应用于LPWA低功耗广域网通信及物联网领域,适用于低功耗,广覆盖,低速率,大容量的广域网连接应用,面向智能表计、智能烟感、定位追踪、共享经济、工业互联等物联网领域。
Cat.1bis芯片
EC618
EC618为全球首款基带、射频、电源实现一体化设计的高集成度Cat.1bis芯片,内部集成电源管理芯片,外围器件数量减少30%以上,尺寸仅有6.1mm*6.1mm,以更低成本支持客户多样化功能需求。同时,其极低的待机功耗可以极大延长终端产品待机时间,满足用户超长待机需求,更好地适配于Tracker、可穿戴、共享、对讲等应用场景。
千米电子
千米电子成立于2019年,针对物联网行业存在的关键问题,历时五年多成功研发出LaKi超低功耗实时广域网技术,包括MAC层的LaKiplus和PHY层的射频SoC,这也是目前全球唯一能够同时实现广覆盖、低功耗和低时延的无线通讯技术。其带宽高达1MHz,大幅提升了物联网的投资回报,适合物联网低成本大规模海量终端接入,具备成为物联网基础设施核心技术的潜力。
LK2400A
LK2400系列是根据物联网通讯和数据特点定制的射频SoC芯片,集成了32位CPU、射频、基带、时钟、功率放大、AES128加密等,在1秒响应的长距离通讯时年功耗只有30mAh左右,比其他无线技术低两到三个数量级,可广泛应用于速率1Mbps以内的大多数物联网应用。
磐启微
磐启微成立于2010年,是一家智慧物联网、工业互联网芯片设计企业,目前公司拥有低功耗远距离ChirpIoT系列、多协议系列、BLE-lite系列三大产品,广泛应用于资产管理、室内定位、工业互联、智能家居、智慧城市等领域。磐启微以“物联互联”为基本,着眼于国家三大基础设施建设,矢志成为国际一流的芯片设计企业。
PAN3029
PAN3029是一款采用ChirpIoTTM调制解调技术的低功耗远距离无线收发芯片,支持半双工无线通信,通过自由网关可兼容LinkWANTM协议。该芯片具有高抗干扰性、高灵敏度、低功耗和超远传输距离等特性。最高具有-142dBm的灵敏度,22dBm的最大输出功率,产生业界领先的链路预算,使其成为远距离传输和对可靠性要求极高的应用的最佳选择。
博流智能科技
博流智能科技成立于2016年,是一家专注于研发世界领先的超低功耗、智能物联网和边缘计算等领域的系统芯片,并提供智能云平台整体解决方案的企业。同时,公司自主开发了完整的超低功耗MCU与高精度模拟sensor hub技术平台,多模无线联接技术、音视频处理与人工智能算法/神经网络处理器(NPU)技术,能自主完整实现单芯片多技术集成的SOC芯片研发。
BL606P
BL606P是一款支持Wi-Fi/BT/Zigbee三模通讯协议、同时集成多路麦克风阵列语音Codec和双核处理器的SoC单芯片,是智能语音领域具有高性价比的解决方案,可用于智能音箱、智能中控面板等领域。
BL616
BL616是国产首款基于WiFi6通讯协议的Wi-Fi/BT/Zigbee三合一SoC芯片,该芯片同时支持语音codec、视频DVP sensor、以及DBI/RGB屏显,适用于智能家居、低功耗门铃、AIOT中控面板等领域。
炬芯科技
炬芯科技股份有限公司成立于2014年,于2021年科创板上市。总部位于珠海,在深圳、合肥、上海、香港等地均设有分部。炬芯科技是中国领先的低功耗系统级芯片设计厂商,专注于中高端智能音频SoC的研发、设计及销售,为无线音频、智能穿戴及智能交互等智慧物联网领域提供专业集成芯片。公司主要产品为蓝牙音频SoC芯片系列、便携式音视频SoC芯片系列、智能语音交互SoC芯片系列等,广泛应用于智能手表、蓝牙音箱、蓝牙耳机、蓝牙语音遥控器、蓝牙收发一体器、智能教育、智能办公等领域。
ATS2831P
炬芯科技ATS2831P系列采用CPU+DSP双核异构架构,支持最新的蓝牙5.3标准,支持LE audio,集成了蓝牙射频(RF)和基带、电源管理单元(PMU)、音频编解码器及微控制单元(MCU)等模块,集蓝牙发射和蓝牙接收功能于一体,规格完整,性能领先。在提供超低延时的高品质音频信号传输的同时,通过内置的高性能DSP实现后端音效处理和AI降噪算法进一步提升整体音质表现。
力合微电子
力合微电子成立于2002年,是行业领先的物联网通信芯片企业,公司专注于电力线载波通信技术和芯片开发。在物联网底层通信、算法及芯片设计拥有完整核心技术。针对物联网应用,力合微电子推出基于电力线的统一通信接口 PLBUS PLC专用芯片方案,实现“有电线,即可通信”。公司核心技术与芯片产品已广泛应用于智能家居全屋智控、智能照明、智慧城市路灯照明、工业物联控制等领域。
PLBUS PLC
电力线通信系列芯片
PLBUS PLC全屋智能电力线通信芯片是为物联网(智能家居)智能终端提供完全自主研发、高集成度、高性能、高性价比基于电力线通信的SoC芯片,实现“通过电线,即可通信”。其符合国家标准31983.31以及国际PLC标准IEEE1901.1,内置高性能MCU,集成了完整的物理层通信协议。开创了国内OFDM窄带PLC时代,也成为电力线通信国家标准的基础。
华冠半导体
华冠半导体成立于2011年,是一家专业从事半导体器件研发,封装、测试和销售为一体的国家高新企业。公司拥有国际先进的半导体集成电路封装测试生产线,具备实现年产值3亿人民币,年出货量20亿块集成电路生产能力。目前产品有电源管理、运算放大器、逻辑器件、MOSFT以及特殊电路等,主要应用于汽车电子、医疗电子、物联网、网络通讯等领域。
HGX3075
HGX3075是一款具有热插拔、失效保护、±16KV ESD保护的3.3V RS485收发器,可广泛应用于RS-422/485通讯方案、数字电表、水表、工业控制、工业电脑、外设、安防监控、路由器等项目。
-End-
免责声明
本文来自腾讯新闻客户端创作者,不代表腾讯新闻的观点和立场。
点击展开全文
打开腾讯新闻,阅读体验更好
抽红包,抽中就送!每人限抽8次,快来试试手气吧
广告
凹印
打开
腾讯新闻
参与讨论
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)