常见的半导体的晶体结构有金刚石型、闪锌矿型、纤锌矿型和氯化钠型4种,如图和表所示。在三元化合物半导体中有部分呈黄铜矿型结构,金刚石型、闪锌矿型和氯化钠型结构可看成是由两套面心立方格子套构而成。不同的是,金刚石型和闪锌矿型是两套格子沿体
对角线的1/4方向套构,而氯化钠型则是沿1/2[100]方向套构金刚石晶格中所有原子同种,而闪锌矿和氯化钠晶格中有两种原子闪锌矿型各晶面的原子排布总数目与金刚石型相同,但在同一晶面或同一晶向上,两种原子的排布却不相同。纤锌矿型属六方晶系,其中硫原子呈六方密堆集,而锌原子则占据四面体间隙的一半,与闪锌矿相似,它们的每一个原子场处于异种原子构成的正四面体中心。但闪锌矿结构中,次近邻异种原子层的原子位置彼此错开60°,而在纤锌矿型中,则是上下相对的。采取这种方式使次近邻异种原子的距离更近,会增强正负离子的相互吸引作用,因此,纤锌矿型多出现于两种原子间负电性差大、化学键中离子键成分高的二元化合物中。
重要的半导体材料硅、锗等元素的原子最外层都具有四个价电子。大量的硅、锗原子组合成晶体靠的是共价键结合。这种结构的特点是:每个原子周围有四个最近邻的原子组成一个正四面体结构。这四个原子分别处在正四面体的顶角上,任意顶角上的原子和中心原子各贡献一个价电子为该两个原子所共有,共有的电子在两个原子之间形成较大的电子云密度,通过它们对原子的引力把两个原子结合在一起,这就是共价键。这样,每个原子和周围四个原子组成四个共价键。在20世纪50年代初期,锗曾经是最主要的半导体材料,但自60年代初期以来,硅已取而代之成为半导体制造的主要材料。现今人们使用硅的主要原因,是因为硅器件工艺的突破,硅平面工艺中,二氧化硅的运用在其中起着决定性的作用,经济上的考虑也是原因之一,可用于制造器件等级的硅材料,远比其他半导体材料价格低廉,在二氧化硅及硅酸盐中硅的含量占地球的25%,仅次于氧。到目前为止,硅可以说是元素周期表中被研究最多且技术最成熟的半导体元素。
半导体的导电能力介于导体和绝缘体之间,半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。
(1)半导体的电导率随温度升高而迅速增加。半导体对温度敏感,体积又小,热惯性也小,寿命又长,因此在无线电技术、远距离控制与测量、自动化等许多方面都有广泛的应用价值。
(2)杂质对半导体材料导电能力的影响非常大。例如,纯净硅在室温下的电阻率为2.14 109欧姆·厘米,若掺入百分之一的杂质(如磷原子),其电阻率就会降至2000欧姆·厘米。虽然此时硅的纯度仍旧很高,但电阻率却降至原来的一百万分之一左右,绝大多数半导体器件都利用了半导体的这一特性。
(3)光照对半导体材料的导电能力也有很大的影响。例如,硫化镉薄膜的暗电阻为几十兆欧,然而受光照后,电阻降为几十千欧,阻值在受光照以后改变了几百倍。半导体的这种性质,使其成为自动化控制中的重要元件。
(4)除温度、杂质、光照外,电场、磁场及其他外界因素(如外应力)的作用也会影响半导体材料的导电能力。
一、N型半导体N型半导体也称为电子型半导体,即自由电子浓度远大于空穴浓度的杂质半导体。
形成原理
掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素,当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素. 某些氧化物半导体,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度。
二、P型半导体
P型半导体一般指空穴型半导体,是以带正电的空穴导电为主的半导体。
形成
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。
特点:
(一)、N型半导体
由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
(二)、P型半导体
掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)