“借道”布局半导体,格力20亿3年赚了12亿,董明珠又“赌”对了

“借道”布局半导体,格力20亿3年赚了12亿,董明珠又“赌”对了,第1张

2019年“双11”,正当大家沉迷于“剁手”购物的时候,格力电器也对外“撒钱”了。

“双11”晚间,格力对外公告以20亿元参与了三安光电的定向增发,投资方向正是三安光电正在聚焦的化合物半导体领域。当时很多媒体都批评格力董事长董明珠不懂半导体,乱投资。而如今看来,三安光电市值已破千亿,保守估计,3年下来,格力持股收益超60%,不得不承认,董明珠又“赌”对了。

那么,董明珠为何要投资三安光电,化合物半导体产业又有何魅力呢?

2014年,三安光电设立全资子公司——三安集成,致力于成为一个集化合物半导体研发、制造和服务的平台。说到三安集成,就不得不提到其产品线外延的基石,移动终端射频的理想材料——砷化镓。

砷化镓有抗辐射、耐高温、良好的光电特性,以及高电子迁移率等优势。

比如,砷化镓应用的工作频率主要在8赫兹以内,所以很适合应用于低频率器件,比如微基站和手机。另外,LED、激光器也是砷化镓的主要应用领域。

据了解,三安集成砷化镓射频2021H1扩产设备已逐步到位,每月能生产出8000片,出货产品在2G~5G手机功率放大器、WIFI等应用领域全面覆盖,海内外客户累计接近100家。如今,三安光电已成为国内射频技术的主力供应商。

另外,三安光电在第三代半导体材料——氮化镓方面,也有不俗的表现。

相比于砷化镓,氮化镓同样具有熔点高、硬度高等特点,而由砷化镓制造的半导体材料更具有宽带隙、高热导率等特点,应用在电子产品上可提高充电效率。不过造价过高,成了砷化镓的主要劣势。不过碳化硅的出现,对这一缺陷进行了补足。

碳化硅具有良好的衬底导热性,非常适用于高温、高频领域,而且硅在地球上储量极高。因此,性能强、造价低的碳化硅基氮化镓成为了半导体产业的新“宠儿”。在雷达、卫星以及5G基站等大功率输出领域,碳化硅基氮化镓都有广泛的应用。据了解,目前三安光电是我国少数能够大规模生产碳化硅基氮化镓的企业,并成功打造了国内首台6英寸氮化镓外延芯片产线,并实现量产。

从整体上来看,三安光电在制造氮化镓外延和芯片方面,具有明显的行业稀缺优势。而集三安光电化合物半导体之大成的,便是其旗舰产品——声表面波滤波器(SAW)。

声表面波滤波器是射频前端中的重要芯片,一直以来,以村田,太阳诱电,京瓷等为代表的日本企业垄断全球声表面波滤波器40%的市场份额。不过,这一垄断如今已经被三安光电所打破。

目前,三安光电子公司——三安集成已经拥有了集声表面波滤波器产品研发、生产和销售为一体的产业集群。另外,通过对压电材料晶圆、可靠封装以及表面波谐振器结构等研究领域的整合,三安集成能够提供无线通讯系统射频前端应用的单频段及多频段的滤波器、双工器产品。

此外,三安集成还持续扩大了SAW滤波器产品的选型库,其频率范围可以覆盖600~2690兆赫兹,通带带宽范围可覆盖15~194兆赫兹。

当然,滤波器相关应用包括但不限于蜂窝系统频段,非授权频段以及其他无线射频前端应用。在芯片级、晶圆级等封装技术加持下,三安集成致力于持续供应高可靠性与高性能的SAW滤波器市场。

2021年,已有41家愿意使用三安集成滤波器产品,其中有17家是国内手机和通信模块的主要客户。毫不客气地说,三安光电的产品已成功导入手机模块产业供应链。另外,三安光电开发的自主知识产权温度补偿型滤波器,性能已经与国际厂商的同类产品性能相当,其优势是能够快速导入客户端。

截至2021年,已经有多家手机终端厂商与三安光电接洽,随着手机终端厂商对三安光电的不断认可,以及三安光电产能的提升,未来在该领域的市场份额将得到进一步提升。

目前,三安光电已经是国内乃至全球化合物半导体领域的领头羊。在提升我国化合物半导体的国际地位和产业定价权方面,做出了贡献。

作为早早布局三安光电的格力来说,不但获得了资本溢价,更巩固了半导体产业的布局。在如今各个产业深受“芯片荒”所困的时候,能够让格力平稳前行。

不得不承认,董明珠的商业智慧的确让很多人当时看不懂,过后追不上。

事实上,碳基半导体晶体管最先是由美国与荷兰科学家在1998年制造出来的,截止到2006年之前,我国在碳纳米管晶体管上并没有明显的建树。可以说,我国对碳纳米管晶体管的研究开始于2000年,7年之后才制备出了性能超越硅晶体管的N型碳纳米管晶体管。由此可知,国外的碳纳米管晶体管的研究要比我们早的多,但是到了今天我们与国外的差距远没有硅晶体管那么大,甚至有超越国外的趋势。

总体而言,国外对碳纳米管晶体管的研究,还是比我们要领先的。在2013年,MIT研究团队发表了由178个晶体管组成的只能执行简单指令的碳纳米管计算机。在2019年,MIT团队已能制造完整的由14000个碳纳米管晶体管组成的处理器了。而国内于2017年制造了基于2500个碳纳米管晶体管的处理器,整体性能相当于因特尔4004的水平。至于在2019年国内是否研发出了集成更多碳纳米管晶体管的处理器,目前尚未有报道。

由于碳纳米管较容易聚合在一起,所以MIT团队利用了一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。要知道MIT团队制造的CPU主频只有1Mhz,早期的80386处理器的频率还有16Mhz,也不是说2019年碳纳米管制造的计算机性能,仅相当于1985年制造的硅晶体管处理器的性能,这差距就太大了。离实用化,还有较长的一段路要走。因为碳纳米管晶体管之间的沟道和碳纳米管晶体管的体积过大,导致碳纳米管晶体管可以容纳的电流较小,容纳得电荷较少。MIT制造的由14000个碳纳米管晶体管组成的处理器中的沟道宽度为1.5微米,与现在纳米级相距较远。也只有缩小碳纳米管晶体管的体积和减小沟道的距离,才可以提升整体性能。

但是国内于2017年,就研制出了栅长为5纳米的碳纳米管晶体管,近日又研发出了栅长3纳米的碳纳米管晶体管。可以说,国内在碳纳米管晶体管的小型化上走的比较远。在2007年左右,国内以碳纳米管晶体管制造的处理器主频就高达5Ghz,要比国外2019年制造等我处理器主频高的多。从国外的相关产品来看,其碳纳米管栅长究竟达到了何种地步,也说不准。只不过,由此可知,在碳纳米管的研发上,国内技术最起码不会差国外技术太多,很有可能是同步发展的。

【碳基半导体芯片真的能够助力我国芯片突破西方禁锢?从此不依赖ASML吗?】

我们应该看到了近期的新闻,2020年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈! 该消息一出,瞬间引起了我们的关注,于是我们扎堆的认为, 碳基半导体芯片一定能够助力我国芯片的突破,打破西方禁锢?从此不依赖ASML。

了解现状——西方国家垄断的是硅基材料,而这些硅基材料在我国,我们的优势非常的低;一些关键性的材料还是倍国家技术给垄断的。而此时,我们想要打破束缚,就必须要寻找新的思路,于是出现了我们期待的:碳基半导体能否替代未来的硅基材料呢?

其实,有专家表示,北由于碳分子结构稳定,很难像硅材料一样通过掺杂其他物质改变性能。因此,碳纳米管要实现产业化,尚有很长一段路要走。不过,如今,北京元芯碳基集成电路研究院的突破确实给了我们很大的希望。

碳基半导体具有成本更低、功耗更小、效率更高。如果能够打破硅基半导体材料的束缚,走出一条全新的碳基半导体路,我们的芯片发展可能更有意义。

其实,以碳纤维(织物)或碳化硅等陶瓷纤维(织物)为增强体,实际上,我们熟知的石墨烯,生物碳以及碳纳米管等等都属于碳基材料。因此,想要碳基材料真正的运用与我们的实际,确实还是有一段路走,可是我们也已经进了一步了。

在芯片处理中, 碳基技术芯片 速度提升,功耗降低,未来更能够运用于多种领域,比如国防,气象,以及我们现在急需要解决的手机芯片,计算机芯片问题。这里我们得知道,相比国外技术, 我国对于碳基技术研究时间早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来。

因此,我们不担心倍国外的技术给限制,因为我们的技术具有前瞻性,确实我们的芯片技术目前还是受限制,特别是ASML的光刻机,因为缺乏技术,在工艺制程方面受到制约。

因此,我们猜测的是,碳基材料未来很有可能打破ASML光刻机的束缚,打破欧美国家芯片的束缚,打造属于我们的芯片技术。

谢谢您的问题。碳基芯片在全球范围内还在朝量产迈进。

碳基芯片目前处于实验室阶段。 IBM和英特尔已经碳基在理论进行了多年的 探索 ,英特尔无果而放弃。IBM与英特尔退而求其次,用的是“掺杂”工艺制备碳纳米管晶体管。在国内,彭练矛和张志勇教授团队在半导体碳碳基半导体材料制备方面取得了研究重大进展,已经领先于全球,但也只是朝产业化进一步迈进。

实验室的成果离现实还很远 。全球碳基芯片真正要实现落地、商品化,除了雄厚的资金,必须要有现有的芯片兼容,直接借用现有半导体产业流程工艺,就可以大大加快碳基芯片产业化进程。

碳基技术需要企业参与 。北京碳基集成电路研究院以前在碳基技术上走在了前列,未来10年发展至少需要20亿元研发投入,这需要企业产研对接,需要企业认识其中的价值。阿里巴巴、腾讯都计划投入数千亿元用于新基建,参与到云服务和芯片全线布局,希望这样的 科技 龙头企业参与“碳基”集成电路,有助于缩短国内碳基技术的商用时间,站在全球视角, 科技 企业及早介入非常重要。

欢迎关注,批评指正。

首先,国外的研究并没有啥进展,因为没有企业投钱,高通的芯片利润这么高,谁会把大把的钱投到一个还不知道成不成功的项目上?

处于 探索 期,技术还远不成熟,距成熟产品路还很远。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9207098.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存