Python中pandas透视表pivot_table功能详解(非常简单易懂)

Python中pandas透视表pivot_table功能详解(非常简单易懂),第1张

概述 一文看懂pandas的透视表pivot_table 一、概述 1.1 什么是透视表? 透视表是一种可以对数据动态排布并且分类汇总的表格格式。或许大多数人都在Excel使用过数据透视表,也体会到它的强大功能,而在pandas中它被称作pivot_table。 1.2 为什么要使用pivot_table? 灵活性高,可以随意定制你的分析计算要求 脉络清晰易于理解数据 *** 作性强,报表神器 二、如何使用  一文看懂pandas的透视表pivot_table 一、概述 1.1 什么是透视表?

透视表是一种可以对数据动态排布并且分类汇总的表格格式。或许大多数人都在Excel使用过数据透视表,也体会到它的强大功能,而在pandas中它被称作pivot_table。

1.2 为什么要使用pivot_table? 灵活性高,可以随意定制你的分析计算要求 脉络清晰易于理解数据 *** 作性强,报表神器 二、如何使用pivot_table

首先读取数据,数据集是火箭队当家球星James Harden某一赛季比赛数据作为数据集进行讲解。数据地址。

先看一下官方文档中pivot_table的函数体:pandas.pivot_table - pandas 0.21.0 documentation

pivot_table(data, values=None, index=None, columns=None,aggfunc=‘mean‘, fill_value=None, margins=False, dropna=True, margins_name=‘All‘)

pivot_table有四个最重要的参数index、values、columns、aggfunc,本文以这四个参数为中心讲解pivot *** 作是如何进行。

2.1 读取数据   import pandas as pd   import numpy as np  df = pd.read_csv( ‘h:/James_Harden.csv‘,enCoding=‘utf8‘)  df.tail()

数据格式如下:

2.2 Index

每个pivot_table必须拥有一个index,如果想查看哈登对阵每个队伍的得分,首先我们将对手设置为index

pd.pivot_table(df,index=[u‘对手‘])

对手成为了第一层索引,还想看看对阵同一对手在不同主客场下的数据,试着将对手与胜负与主客场都设置为index,其实就变成为了两层索引

pd.pivot_table(df,index=[u‘对手‘,u‘主客场‘])

 

试着交换下它们的顺序,数据结果一样:

pd.pivot_table(df,index=[u‘主客场‘,u‘对手‘])

 

看完上面几个 *** 作,Index就是层次字段,要通过透视表获取什么信息就按照相应的顺序设置字段,所以在进行pivot之前你也需要足够了解你的数据。

2.3 Values

通过上面的 *** 作,我们获取了james harden在对阵对手时的所有数据,而Values可以对需要的计算数据进行筛选,如果我们只需要james harden在主客场和不同胜负情况下的得分、篮板与助攻三项数据:

pd.pivot_table(df,u‘胜负‘],values=[u‘得分‘,u‘助攻‘,u‘篮板‘])

 

2.4 Aggfunc

aggfunc参数可以设置我们对数据聚合时进行的函数 *** 作。

当我们未设置aggfunc时,它默认aggfunc=‘mean‘计算均值。我们还想要获得james harden在主客场和不同胜负情况下的总得分、总篮板、总助攻时:

pd.pivot_table(df,u‘篮板‘],aggfunc=[np.sum,np.mean])

 

2.5 Columns

Columns类似Index可以设置列层次字段,它不是一个必要参数,作为一种分割数据的可选方式。

 #fill_value填充空值,margins=True进行汇总  pd.pivot_table(df,index=[ u‘主客场‘],columns=[u‘对手‘],values=[u‘得分‘],aggfunc=[np.sum],fill_value=0,margins=1)

@H_502_295@

 

现在我们已经把关键参数都介绍了一遍,下面是一个综合的例子:

table=pd.pivot_table(df,columns=[u‘主客场‘],aggfunc=[np.mean],fill_value=0)

结果如下:

 

aggfunc也可以使用dict类型,如果dict中的内容与values不匹配时,以dict中为准。

 table=pd.pivot_table(df,aggfunc={u‘得分‘:np.mean, u‘助攻‘:[min,max,np.mean]},fill_value=0)

结果就是助攻求min,max和mean,得分求mean,而篮板没有显示。

总结

以上是内存溢出为你收集整理的Python中pandas透视表pivot_table功能详解(非常简单易懂)全部内容,希望文章能够帮你解决Python中pandas透视表pivot_table功能详解(非常简单易懂)所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1197909.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-03
下一篇 2022-06-03

发表评论

登录后才能评论

评论列表(0条)

保存