多元函数极值如何判断极大和极小值

多元函数极值如何判断极大和极小值,第1张

1如果没有限制条件的话,以二元函数为例,第一步求出该函数的一阶偏导数都为零时的点,记为P0点,此时P0点是稳定点,然后验证Heesen矩阵的的正定性,若正定,在P0点取得极小值,若负定,在P0点取得极大值,若不定,不取得极值

(具体还有判断公式)

2如果有限制条件,例如限制条件为ψ(x,y)=0,那么有两种方法:

1升维:构造拉格朗日函数,利用拉格朗日乘数法作为必要条件求解,然后在验证是否取得极值

2降维:这种方法多种多样,比如利用参数化求解又或者例如u(x,y,z)=0,限制条件为ψ(x,y,z)=0那么就会得出一个关于z的表达式为:z(x,y)=0,将其带入u(x,y,z)中,这样的话,原函数就由3维降到了2维,就比较方便了

求f(x,y)=x³+2xy-y³+2的极值,解:令∂f/∂x=3x²+2y=0①再令∂f/∂y=2x-3y²=0②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0,故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。

再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27

扩展资料

人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。

但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。

例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。

-多元函数

各个分量的偏导数为0,这是一个必要条件。充分条件是这个多元函数的二阶偏导数的行列式为正定或负定的。如果这个多元函数的二阶偏导数的行列式是半正定的则需要进一步判断三阶行列式。如果这个多元函数的二阶偏导数的行列式是不定的,那么这时不是极值点。

以二元函数为例,设函数z=f(x,y)在点(x。,y。)的某邻域内有连续且有一阶及二阶连续偏导数,又fx(x。,y。),fy(x。,y。)=0,令

fxx(x。,y。)=a,fxy=(x。,y。)=b,fyy=(x。,y。)=c

则f(x,y)在(x。,y。)处是否取得极值的条件是

(1)ac-bb>0时有极值

(2)ac-bb<0时没有极值

(3)ac-bb=0时可能有极值,也有可能没有极值如果是n元函数需要用行列式表示。估计你也没学行列式呢。

如果是条件极值,那么更复杂一些。

大一的时候数学分析讲的,网上不好找到教材,建议你看一下大学课本。

如果需要我可以发给你pdf。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12177768.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存