gamma函数是阶乘函数对非整数值的扩展的概括,由瑞士数学家莱昂哈德·欧拉在 18 世纪提出。
对于一个正整数N, 阶乘定义为 n ! = 1 × 2 × 3 ×⋯× ( n − 1) × n 举例来说, 5! = 1 × 2 × 3 × 4 × 5 = 120 但是这个公式对于不是整数的n毫无意义。
为了把阶乘扩展到任意大于零的实数,gamma函数被定义为
使用积分技术, 可以证明Γ(1) = 1 使用分部积分,可以得出gamma函数有以下的递归的特性:if x > 0, then Γ( x + 1) = x Γ( x ),由此可知, Γ(2) = 1 Γ(1) = 1; Γ(3) = 2 Γ(2) = 2 × 1 = 2!; Γ(4) = 3 Γ(3) = 3 × 2 × 1 = 3!; 等等。通常,如果 x 是自然数 (1, 2, 3,),则 Γ(x) = (x − 1)!只要实部大于或等于 1,该函数就可以扩展到负的非整数实数和复数。 虽然 gamma 函数的行为类似于自然数(离散集)的阶乘,但其扩展到正实数(连续集)可用于对涉及连续变化的情况进行建模,对微积分、微分方程、复数分析和统计有重要应用。
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成 。
(1)在实数域上伽玛函数定义为:
(2)在复数域上伽玛函数定义为:
其中 ,此定义可以用解析开拓原理拓展到整个复数域上,非正整数除外。
(3)除了以上定义之外,伽马函数公式还有另外一个写法:
我们都知道 是一个常用积分结果,公式(3)可以用 来验证。
可以利用伽玛函数为求解积分,伽马函数为Γ(α)=∫x^(α-1)e^(-x)dx。
利用伽玛函数求e^(-x^2)的积分,则令x^2=y,dx=(1/2)y^(-1/2)dy,有∫(e^(-x^2)dx=(1/2)∫y^(-1/2)e^(-y)dy。而∫y^(-1/2)e^(-y)dy是α=1/2时,伽玛函数Γ(α)的表达式。
在负无穷到正无穷上,∫(e^(-x^2)dx=(1/2)Γ(1/2)。
扩展资料
求解积分时,利用伽玛函数,函数的1/2处的值为:
对x∈(0,1) ,有
这个公式称为余元公式。由此可以推出以下重要的概率公式:
伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
在实数域上伽玛函数定义为:
(2)在复数域上伽玛函数定义为:
参考资料-伽玛函数
如下图:
伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。
相关信息:
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16可以用通项公式n²自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x²通过所有的整数点(n,n²),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,,我们可以计算2!,3!,是否可以计算25!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。
伽马分布期望推导公式:D(X)=E(X^2)-(E(X))^2。
取决于所选择的概率密度函数的形式。通常情况下,具有两种形式,这两种形式的概率密度函数有一点小差别(即参数的选择上,形状参数相同,而第二个参数互为倒数关系)。伽马分布的期望要看使用的函数表达式 一般的表达式中期望等于αβ,方差等于α(β^2)。
伽玛函数(Gamma函数)
也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)