**
OpenCV+Python实现医学影像拼接(一)**
内容仅供参考首先是准备拼接的图片,(由于环境原因,本人裁剪的)
原图片为
我的思路是一二先拼接,三四再拼接,拼接后图片如下:
与原图像对比还是有较为明显的瑕疵:如拼接缝、底部内容模糊、旁边线条歪了等。
以下是我的程序界面。
给大家介绍下我的环境把
win10,Python 3.7 opencv与contrib版本为4.5.5.62
这里我将一些直接定义了一些函数,调用起来方便。
# coding: utf-8
# 实现上下左右多副图像融合拼接
# 环境py37
import os
import cv2
import numpy as np
import pydicom as pd
from matplotlib import pyplot as plt
'''
实现对多副图像的拼接融合
需拼接图像存放到path路径:
E:/Study/Opencv&Image/waiting_stitch_img
拼接后图像存放路径为'save'路径:
E:/Study/Opencv&Image/waiting_stitch_img/waiting_stitch_image
'''
path = r'E:/Study/Opencv&Image/waiting_stitch_img'
save = r'E:/Study/Opencv&Image/waiting_stitch_img/waiting_stitch_image'
image1 = cv2.imread(path + '/' + 'img1.jpg')
image2 = cv2.imread(path + '/' + 'img2.jpg')
image3 = cv2.imread(path + '/' + 'img3.jpg')
image4 = cv2.imread(path + '/' + 'img4.jpg')
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
gray3 = cv2.cvtColor(image3, cv2.COLOR_BGR2GRAY)
gray4 = cv2.cvtColor(image4, cv2.COLOR_BGR2GRAY)
'''
函数: read_Dcm
功能: 读取Dcm文件
'''
def read_Dcm(path):
# path = r"G:/DiCom/"
# savePath = r"G:/save_image/save_dicom/"
fileList = os.listdir(path) # 将此路径内的文件或文件夹的路径列出来
# 统计文件下图像个数
totalNum = len(fileList)
print('totalNum', totalNum)
for filename in os.listdir(path):
print(filename)
for file in os.listdir(path + filename):
# print(path + filename + '/' + file)
dcm = pd.read_file(path + filename + '/' + file)
# dcm = path + filename
plt.imshow(dcm.pixel_array, 'gray')
plt.title("dcm")
plt.show()
return dcm
'''
函数: dcm_loadFileInformation
功能: 获取DCM文件内tag信息
参数: 传入的是DCM文件的路径
内容: 分别获取患者的就诊ID、姓名、出生日期、性别等。
返回值:
返回DCM值
'''
def dcm_loadFileInformation(path1):
information = {}
dcm = pd.read_file(path1)
information['PatientID'] = dcm.PatientID
information['PatientName'] = dcm.PatientName
information['PatientBirthDate'] = dcm.PatientBirthDate
information['PatientSex'] = dcm.PatientSex
information['StudyID'] = dcm.studyID
information['studyDate'] = dcm.studyDate
information['StudyTime'] = dcm.StudyTime
information['InstitionName'] = dcm.InstitionName
information['Manufacturer'] = dcm.Manufacturer
print("The DCM file information:", dcm)
return dcm
'''
函数: dcm2JPG
功能: 将DCM文件夹转换为 jpg格式文件
参数: 传入DCM文件路径
内容: 从指定路径里读取DCM文件,并将其转换为jpg格式图像
参数: 返回jpg图像
'''
def dcm2JPG(path):
dcm = pd.read_file(path)
return dcm
'''
函数: JPG2dcm
功能: 将JPG文件夹转换为dcm格式文件
参数: 传入JPG文件路径
内容: 从指定路径里读取jpg文件,并将其转换为dcm格式图像;
并将文件相应信息写入DCM
参数: 返回dcm图像
'''
def JPG2dcm(newpath):
return
'''
函数: SiFt
功能: 提取图像特征
参数: image1,image2为传入图像
内容:
1.调用detectAndCompute寻找特征点和描述子;
2.调用drawKeypoints绘制特征点
返回值:
Imag_1,Image_2 保存特征点
kp1,des_1,kp2,des_2分别表示两张图片的特征点和描述子
'''
def SIFT(image1, image2):
sift = cv2.xfeatures2d.SIFT_create()
kp1, des_1 = sift.detectAndCompute(image1, None)
kp2, des_2 = sift.detectAndCompute(image2, None)
Image_1 = cv2.drawKeypoints(image1, kp1, None)
Image_2 = cv2.drawKeypoints(image2, kp2, None)
return Image_1, Image_2, kp1, des_1, kp2, des_2
'''
函数: FlAnn快速最近邻搜索包
功能: 图像特征匹配
参数: 传入图像的描述子des_1、des_2
内容:
1.index_params配置所需算法
2.search_params设定递归次数
返回值:
matchesc存放匹配对;
matchesMask# 只需要绘制好的匹配项,因此创建一个掩码
'''
def flann(des_1, des_2):
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE,
tress=5)
search_params = dict(checks=200)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des_1, des_2, k=2)
matchesMask = [[0, 0] for i in range(len(matches))]
return matches, matchesMask
'''
函数: ration_test
功能: 比率测试 将不满足的最近邻匹配之间距离比率大于设定的阈值的匹配剔除.
参数:
matches匹配对,kp特征点, matchesMask
内容:
1.当最小的两个距离的比率超过一定时,判断为不好的点,
2.good[]用于存放匹配对数;设置matchesMask过滤匹配点
返回值:
good:存放匹配对数
matchesMask:存放最优匹配点
'''
def ration_test(matches, kp1, matchesMask):
good = [] # 存放匹配对数
pts1 = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.8 * n.distance:
good.append(m)
pts1.append(kp1[m.queryIdx].pt)
matchesMask[i] = [i, 0]
return good, pts1, matchesMask
'''
函 数: MakeBorder
功 能: 创建一个模板,用于匹配
参 数:
Bordermg1、Bordermg2为输入图像;
内 容:
srcImg对img1进行边界扩充后的图像 ;
testImg对img2进行边界扩充后的图像 ;
返回值:
返回srcImg与TestImg
'''
def MakeBorder(BorderImg1, Bordermg2):
top, bot, left, right = 0, 180, 0, 0
srcImg = cv2.copyMakeBorder(BorderImg1,
top, bot, left, right,
cv2.BORDER_CONSTANT,
value=(0, 0, 0))
testImg = cv2.copyMakeBorder(Bordermg2,
top, bot, left, right,
cv2.BORDER_CONSTANT,
value=(0, 0, 0))
return srcImg, testImg
'''
函数: Draw_Tool
功能: draw_params给特征点和匹配的线定义颜色,
draw_Img连接匹配点;
内容: draw_params给特征点和匹配的线定义颜色,
draw_Img连接匹配点;
参数:
matchesMask, 存放最优匹配点
gray1, gray2,待匹配图像
kp1, kp2, 分别表示图像特征点
matches,保存图像匹配对数
返回值:
draw_Img,特征匹配图像
'''
def Draw_Tool(matchesMask, gray1, kp1, gray2, kp2, matches):
draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
draw_Img = cv2.drawMatchesKnn(gray1, kp1, gray2,
kp2, matches, None,
**draw_params)
return draw_Img
'''
函数: StitchImg
功能: 实现图像竖向、横向拼接
内容:
参数:
srcImg,与上同;testImg,与上同
good,存放好的匹配点
kp1, kp2图像的特征点
'''
def StitchImg(srcImg, testImg, good, kp1, kp2):
print("===========即将进行拼接!==============\n")
rows, cols = srcImg.shape[:2]
print("srcImg.shape[:2]", srcImg.shape[:2])
rows1, cols1 = testImg.shape[:2]
print("testImg.shape[:2]", testImg.shape[:2])
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
print("len(good)", len(good))
# 查询图像的特征描述子索引
src_pts = np.float32([kp1[m.queryIdx].
pt for m in good]).reshape(-1, 1, 2)
# 训练(模板)图像的特征描述子索引
dst_pts = np.float32([kp2[m.trainIdx].
pt for m in good]).reshape(-1, 1, 2)
# 计算的M是img1转换到img2的转换矩阵
M, mask = cv2.findHomography(src_pts, dst_pts,
cv2.RANSAC, 5.0)
# flag用的是warp_inverse_map, 这是对M做一个反变换
# 透视变换,新图像可容纳完整的两幅图
warpImg = cv2.warpPerspective(testImg, np.array(M), (
testImg.shape[1],
testImg.shape[0]),
flags=cv2.WARP_INVERSE_MAP
)
plt.imshow(warpImg, )
plt.title("warpImg")
plt.show()
warpImg1 = cv2.warpPerspective(srcImg, np.array(M), (
srcImg.shape[1] + 100,
srcImg.shape[0] + 300),
flags=cv2.WARP_INVERSE_MAP
)
plt.imshow(warpImg1)
plt.title("warpImg1")
plt.show()
# 开始重叠的最左端
for col in range(0, cols):
left = col
break
print("开始重叠的左端位置是:第" + str(col) + "列!")
# 从列表的下标为cols-1的元素开始,步长为1,
# 倒序取到下标为0的元素(但是不包括下标为0元素)
for col in range(cols - 1, 0, -1):
# 重叠的最右一列
if srcImg[:, col].any() and warpImg[:, col].any():
right = col
print("right", right)
break
print("开始重叠的右端位置是:第" + str(right) + "列!")
# 存储黑色图像于res中,作为模板
res = np.zeros([rows, cols, 3], np.uint8)
plt.imshow(res)
plt.title("res")
plt.show()
print("res_size", res.shape[:2])
print("rows", rows)
print("cols", cols)
# 将图片testImg或srcImg像素填充进入至创建好的res模板中
for row in range(0, rows):
# print("row", row)
for col in range(0, cols):
# 如果没有原图,用旋转的填充
if not srcImg[row, col].any():
res[row, col] = warpImg[row, col]
elif not warpImg[row, col].any():
res[row, col] = srcImg[row, col]
else:
# 图像融合
srcImgLen = float(abs(col - left))
testImgLen = float(abs(col - right))
alpha = srcImgLen / (srcImgLen + testImgLen)
res[row, col] = np.clip(srcImg[row, col]
* (1 - alpha)
+ warpImg[row, col]
* alpha
, 0, 255)
res_RGB = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
plt.figure()
plt.imshow(res_RGB)
plt.title("res_RGB")
plt.show()
cv2.imwrite(save + '/' + 'img5.jpg', res_RGB)
else:
print("Not enough matches are found - {}/{}".format(len(good),
MIN_MATCH_COUNT))
matchesMask = None
print("=====================拼接完成!===========================\n")
return res_RGB
# 主程序执行模块
# def main():
if __name__ == '__main__':
print("=============主函数执行!!===========\n")
# path = r"G:/DiCom/"
# dcm = read_Dcm(path)
print("第一次拼接!!!!!")
img1, img2, k1, des1, k2, des2 = SIFT(image1, image2)
matches, matchesMask1 = flann(des1, des2)
good, pts, matchesMask2 = ration_test(matches, k1, matchesMask1)
srcImg, testImg = MakeBorder(image1, image2)
draw_Img = Draw_Tool(matchesMask2, gray1, k1, gray2, k2, matches)
res1 = StitchImg(srcImg, testImg, good, k1, k2)
print("第二次拼接!!!!!")
img3, img4, k3, des3, k4, des4 = SIFT(image3, image4)
matches34, matchesMask34 = flann(des3, des4)
good1, pts1, matchesMask5 = ration_test(matches34, k3, matchesMask34)
srcImg1, testImg1 = MakeBorder(image3, image4)
draw_Img1 = Draw_Tool(matchesMask5, gray3, k3, gray4, k4, matches34)
res2 = StitchImg(srcImg1, testImg1, good1, k3, k4)
print("第三次拼接!!!!!")
img5, img6, k5, des5, k6, des6 = SIFT(res1, res2)
matches56, matchesMask56 = flann(des5, des6)
good2, pts2, matchesMask6 = ration_test(matches56, k5, matchesMask56)
srcImg2, testImg2 = MakeBorder(res1, res2)
draw_Img2 = Draw_Tool(matchesMask56, res1, k5, res2, k6, matches56)
res3 = StitchImg(srcImg2, testImg2, good2, k5, k6)
大概的框图如下(没能认真整理真是抱歉):
下一把打算对瑕疵部分进行优化T_T,又是头大的一天!!!!!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)