机器学习模型自我代码复现:回归树

机器学习模型自我代码复现:回归树,第1张

根据模型的数学原理进行简单的代码自我复现以及使用测试,仅作自我学习用。模型原理此处不作过多赘述,仅罗列自己将要使用到的部分公式。

如文中或代码有错误或是不足之处,还望能不吝指正。

回归树,是决策树的一种,以CART树为基础的二叉树。与原本的分类决策树不同,由于因变量为连续型变量,因此不再使用GINI系数作为划分属性的标准,而是采用均方误差作为替代,以此决定划分的属性以及划分的点。

此处自己实现一个回归树;并根据叶子节点样本数、树的高度以及均方误差进行后剪枝。由于能力有限,在实现时没有做好函数功能的抽象化,有很多功能都是后来想到了才加上去的,导致了算法的效能较低,也算是吸取经验了。

import numpy as np
import pandas as pd
import random
import collections
from sklearn.preprocessing import  PolynomialFeatures
from sklearn.model_selection import train_test_split
from collections import deque

class TreeNode:
    def __init__(self,labels_idx=None,left=None,right=None,split_idx=None,is_discrete=None,split_value=None,father=None) -> None:
        """
        回归树树结构
        left:左子树
        right:右子树
        labels_idx:在训练中训练集的label对应的下标
        is_discrete:是否是离散量
        split_idx:划分特征对应的下标
        split_value:划分点
        father:父亲节点
        """
        self.labels_idx = labels_idx
        self.left = left
        self.right = right
        self.split_idx = split_idx
        self.is_discrete = is_discrete
        self.split_value = split_value
        self.father = father

class RegressionTree:
    def __init__(self,data,labels,is_discrete,validate_ratio=0.1):
        """
        初始化
        is_discrete:列表,传入特征是否是变量
        validate_ratio:保留验证集的比例
        """
        self.data = np.array(data)
        self.labels=np.array(labels)
        self.feature_num = self.data.shape[1]
        self.is_discrete = is_discrete
        self.validate_ratio = validate_ratio
        self.leaves = []
        if validate_ratio>0:
            all_index = range(data.shape[0])
            self.train_idx,self.test_idx = train_test_split(all_index,test_size=validate_ratio)
            self.validate_data = self.data[self.test_idx,:]
            self.validate_label = self.labels[self.test_idx]
            self.train_data = self.data[self.train_idx,:]
            self.train_label = self.labels[self.train_idx]
    
    def get_mse(self,y_pred,y_true):
        """
        计算MSE
        """
        y_pred = np.array(y_pred)
        y_true = np.array(y_true)
        return np.mean(np.square(y_pred-y_true))

    def generate_tree(self,idxs,min_ratio):
        """
        递归生成树结构
        idxs:子树结构所含元素的下标
        min_ratio:叶子节点至少应当占(训练集+验证集)的比例
        """
        root = TreeNode(labels_idx=idxs)
        if len(idxs)/self.data.shape[0]<=min_ratio:
            return root
        idx,split_value = self.choose_feature(self.data[idxs,:],self.labels[idxs])
        root.split_value = split_value
        root.split_idx = idx
        left_idxs = []
        right_idxs = []
        if self.is_discrete[idx]:
            for i in idxs:
                if self.data[i,idx] != split_value:
                    right_idxs.append(i)
                else:
                    left_idxs.append(i)
        else:
            for i in idxs:
                if self.data[i,idx] <= split_value:
                    right_idxs.append(i)
                else:
                    left_idxs.append(i)
        left_idxs = np.array(left_idxs)
        right_idxs = np.array(right_idxs)
        root.left = self.generate_tree(left_idxs,min_ratio)
        if root.left:
            root.left.father = root
        root.right = self.generate_tree(right_idxs,min_ratio)
        if root.right:
            root.right.father = root
        return root

    def train(self,max_depth = 0,min_ratio=0.05):
        
        """
        训练过程,包括创建决策树与剪枝
        max_depth:树的最大高度
        min_ratio:叶子节点至少应当占(训练集+验证集)的比例
        """
        if self.validate_ratio>0:
            idx = self.train_idx
        else:
            idx = range(len(self.labels))
        
        self.tree = self.generate_tree(idx,min_ratio)
        #当验证集比例>0时,采取后剪枝策略
        if self.validate_ratio>0:
            self.find_leaves(self.tree)
            nodes = deque(self.leaves)
            while len(nodes)>0:
                n=len(nodes)
                for _ in range(n):
                    node = nodes.popleft()
                    if not node.father:
                        nodes = []
                        break
                    valid_pred = self.predict(self.validate_data)
                    mse_before = self.get_mse(valid_pred,self.validate_label)
                    backup_left = node.father.left
                    backup_right= node.father.right
                    node.father.left = None
                    node.father.right = None
                    valid_pred = self.predict(self.validate_data)
                    mse_after = self.get_mse(valid_pred,self.validate_label)
                    if mse_after>mse_before:
                        node.father.left = node.father.left
                        node.father.right = node.father.right
                    else:
                        nodes.append(node.father)
        #限制最大高度
        if max_depth>0:
            nodes = deque([self.tree])
            d=1
            while len(nodes)>0 and d0:
                for node in nodes:
                    node.left=None
                    node.right=None
        
        
    def find_leaves(self,node):
        """
        寻找叶子节点
        """
        if not node.left and not node.right:
            self.leaves.append(node)
            return None
        else:
            if node.left:
                self.find_leaves(node.left)
            if node.right:
                self.find_leaves(node.right)
        

    def predict_one(self,x,node=None):
        """
        根据决策树预测给定的单个样本
        """
        if node == None:
            node = self.tree
        while node.left and node.right:
            idx = node.split_idx
            if self.is_discrete[idx]:
                if x[idx]==node.split_value:
                    node = node.left
                else:
                    node = node.right
            else:
                if x[idx]>node.split_value:
                    node = node.right
                else:
                    node = node.left

        res_idx = node.labels_idx
        return np.mean(self.labels[res_idx])
    
    def predict(self,x,node=None):
        """
        预测给定的样本集
        """
        x = np.array(x)
        predicts = []
        for i in range(x.shape[0]):
            res = self.predict_one(x[i,:],node)
            predicts.append(res)
        return predicts

    def sum_std(self,x):
        """
        计算均方误差
        """
        return np.sum(np.square(x-np.mean(x)))/len(x)
    
    def choose_feature(self,x,left_labels):
        """
        选择可以让子节点均方误差和最小的特征以及分割方式
        """
        std_list = []
        split_value_list = []
        for i in range(x.shape[1]):
            final_split_value,final_sum_std=self.calc_std(x[:,i],self.is_discrete[i],left_labels)
            std_list.append(final_sum_std)
            split_value_list.append(final_split_value)
        idx = np.argmin(std_list)
        return idx,split_value_list[idx]
    
    def calc_std(self,feature,is_discrete,labels):
        """
        对于一个特征,检索能够使得子节点均方误差最小的分割方式
        """
        final_sum_std = float("inf")
        final_split_value = 0
        idx = range(len(feature))
        feature_with_idx = np.c_[idx,feature]
        labels = np.array(labels)
        if is_discrete:
            values = list(set(feature))
            idx_dict = {v:[] for v in values}
            for i,fea in feature_with_idx:
                idx_dict[fea].append(i)
            for v in values:
                anti_idx = [i for i in idx if i not in idx_dict[v]]
                left = labels[idx_dict[v]]
                right = labels[anti_idx]
                if left.shape[0]==0 or right.shape[0] == 0:
                    continue
                sum_std = self.sum_std(left)+self.sum_std(right)
                if sum_std

使用mpg(汽车排放量)数据集进行测试

import pandas as pd

df = pd.read_excel("mpg.xlsx")
df.replace("?",pd.NA,inplace=True)
df.dropna(axis=0,inplace=True)
label = df.iloc[:,0].values
data = df.iloc[:,1:5].values
x_train,x_test,y_train,y_test = train_test_split(data,label)

rt = RegressionTree(x_train,y_train,is_discrete=[True,False,False,False],validate_ratio=0.1)
rt.train(max_depth=10)
res = rt.predict(x_test)
rt.get_mse(res,y_test)
"""
53.20787956384344
"""


from sklearn.tree import DecisionTreeRegressor
dr = DecisionTreeRegressor()
dr.fit(x_train,y_train)
res2 = dr.predict(x_test)
rt.get_mse(res2,y_test)
"""
27.945918367346938
"""

效果比不上sklearn的库;且并不稳定,有时似乎会出现“只有根节点”的现象。如看官发现了不足或是错误之处,欢迎指正。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/715666.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-25
下一篇 2022-04-25

发表评论

登录后才能评论

评论列表(0条)