想做IT,在大学里学什么专业?

想做IT,在大学里学什么专业?,第1张

如需大数据分析培训推荐选择达内教育。数据分析课程以下内容:

1、大数据前沿知识及hadoop入门。了解大数据的历史背景及发展方向,掌握hadoop的两种安装配置。

2、Hadoop部署进阶。熟练掌握hadoop集群搭建;对Hadoop架构的分布式文件系统HDFS进行深入分析。

3、Java基础。了解java程序设计的基本思想,熟练利用eclipse进行简单的java程序设计,熟练使用jar文件,了解mysql等数据库管理系统的原理,了解基于web的程序开发流程。

4、MapReduce理论及实战。熟悉MapReduce的工作原理及应用,熟悉基本的MapReduce程序设计,掌握根据大数据分析的目标设计和编写基于mapreduce的项目。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据分析培训的相关信息,推荐咨询达内教育。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。达内IT培训机构,试听名额限时抢购。

问题一:想要做数据分析师应选择什么专业? 统计(有统计理论)、计算机专业(会编程序实现)。其实专业关系不大,只要想做,都可以慢慢的做到

问题二:数据分析员属于什么专业 没有属于什么专业,一般从事的人都是统计学或者数学专业的。

问题三:数据分析师有哪些专业要求 你好,是没有专业要求的,只要你数据基础不是太差,通过下面几步就可以成为一名数据分析师。

第一步:统计概率理论基础

这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。

第二步:软件 *** 作结合分析模型进行实际运用

关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样 *** 作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。

第三步:数据挖掘或者数据分析方向性选择

其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。

第四步:数据分析业务应用

这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要,而这个能力是需要在工作之中一点一滴的积累,也许目前是做零售,会用到一些相关回归方法,但转行做电商,又会用到其他的挖掘等方法。业务虽千变万化,但是分析方法却万变不离其宗,所以掌握好技术用到任何一个环境靠的只有是业务经验的积累。

当然,考个CDA的数据分析师证书就更好了。

问题四:数据分析师读什么专业 现在还没有确切的说法。CDA注册数据分析师协会(Certified Data Analyst Institute)”在顺应大数据、云计算的潮流下发起成立的职业简称。CDA数据分析师项目包括教育,咨询,考试,认证,机构招聘合作。CDA数据分析师分为三个等级,CDA协会每年举办两次等级考试,通过考试者可以获得CDA协会颁发的数据分析师等级证书,此证书代表数据分析师人才技能水平,为企业事业单位选拔和聘用专业人才的参考依据。

问题五:大数据分析需要什么专业 学习财务、统计、经济、投资、金融和企业管理等专业或相关专业均可。

问题六:学哪些专业的人,做大数据分析这个职位比较合适 这个没有绝对的!

都只是相对的,

要看做的数据分析工作偏向于哪个方面,

比如说:做营销数据分析,那肯定懂得营销的专业人士更有优势些;

做电商数据分析,那就是学IT出身的,相对合适些;

做品牌形象分析时,常会用到映射法,映射法是基于心理学的数据收集方法,那就是学心 理学的更合适些;

做投资分析师,学财务管理学的更合适;

……

问题七:学数据分析的有哪些专业? 统计学,金融,数学与应用数学等都会涉及很多。数据分析是个笼统的概念,大多工科都会涉及。

问题八:数据分析师属于什么职能分类 数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。 互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。在“原子世界”中,抽样调查是最经常采用的数据获取方式,主要原因就是大范围普查的成本太高――最典型的应用就是电视收视率。而在互联网时代,针对互联网行业的研究,在局部(例如某个网站或同类网站的集群)做到低成本、高效率的全样本数据采集是有可能实现的。同样,“原子世界”中的很多数据不具备连续性,而互联网世界中的数据却有可能做到连续更新,甚至实时――最典型的应用就是网站全样本、全天候数据统计和分析研究。 与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。例如,结合传统的消费心理学理论,构建丰富的互联网信息消费行为模型。 就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。数据分析师在这方面大有可为。 此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。例如,收集内容消费者信息、形成内容消费者信息数据库、根据数据库的信息与内容消费者保持即时联系、传递产品和服务的信息、数据库的更新和维护。由此,数据分析师提供的数据还将成为定制产品、个性化服务的重要依据:借助先进的数据库技术,对内容资源进行深入挖掘和多次利用,提供个人偏好的内容服务,或借助数字印刷和出版技术,实现按需生产产品并交付出版印刷。

问题九:数据分析师一般是什么专业如何成为数据分析师 考取项目数据分析师证书,积累经验,就可以成为项目数据分析师了

问题十:什么是数据分析? 数=数学、数字(来源、架构);据=凭据、依据(标准、报表);分=划分、区分(筛选、处理);析=解析、剖析(结果)。我们了解数据分析的意义之后,更需懂得数据对做好数据分析,除了具备专业的数据分析知识或技巧,学会使用好数据分析软件也是非常重要的,做起事来更能事半功倍,如大家所熟悉的TopBox(智投分析)这类软件,具有非常强的数据监测实力,以前很多需要人工提取、再计算的转化数据,现在软件能直接监测得到。

计算机科学与技术专业、软件工程专业、网络工程专业、计算机网络技术专业、电子科学与技术。

1、计算机科学与技术专业

计算机科学与技术是国家一级学科,下设信息安全、软件工程、计算机软件与理论、计算机系统结构、计算机应用技术、计算机技术等专业。主修大数据技术导论、数据采集与处理实践、Web前/后端开发、统计与数据分析、机器学习、高级数据库系统等课程。

2、软件工程专业

软件工程专业是2002年国家教育部新增专业,随着计算机应用领域的不断扩大及中国经济建设的不断发展,软件工程专业成为了一个新的热门专业。软件工程专业以计算机科学与技术学科为基础,强调软件开发的工程性,使学生在掌握计算机科学与技术方面知识和技能的基础上熟练掌握从事软件需求分析、软件设计、软件测试、软件维护和软件项目管理等工作。

3、网络工程专业

网络工程专业主要讲授计算机科学基础理论、计算机软硬件系统及应用知识、网络工程的专业知识及应用知识。网络工程专业旨在培养具有创新意识,具有本专业领域分析问题和解决问题的能力,具备一定的实践技能,并具有良好的外语应用能力的高级研究应用型专门人才。

4、计算机网络技术专业

计算机网络技术是指培养适应生产、建设、管理、服务第一线需要的德、智、体、美全面发展,掌握计算机网络技术基础知识,培养具有一定计算机网络基本理论和开发技术,具备从事程序设计、Web的软件开发、计算机网络的组建、网络设备配置、网络管理和安全维护能力的网络高技术应用型人才。

5、电子科学与技术

本专业培养具备物理电子、光电子与微电子学领域内宽广理论基础、实验能力和专业知识,能在该领域内从事各种电子材料、元器件、集成电路、乃至集成电子系统和光电子系统的设计、制造和相应的新产品、新技术、新工艺的研究、开发等方面工作的高级工程技术人才。

参考资料来源:百度百科-计算机科学与技术专业

参考资料来源:百度百科-软件工程专业

参考资料来源:百度百科-网络工程专业

参考资料来源:百度百科-计算机网络技术专业

参考资料来源:百度百科-电子科学与技术

IT的更有前途,IT的工作范围包括的比较大。数据分析和大数据的区别也是很大的。大数据是需要学习java,linux,mysql的,而数据分析只是分析数据就行了。柠檬学院大数据,注册就能学习java,linux,mysql,大数据,html5的课程了。

大数据就业前景

伴随着大数据技术的成熟,大数据应用的普及和发展才刚刚开始,我们预计未来二十年,甚至更长一段时间都是大数据黄金发展阶段,相关的行业将引来巨大的发展机遇。大部分行业都需要,市场、营销、运营相关的需求很多。大数据不是职位,学完大数据认证后你可以从事大数据挖掘专家,高级行业分析师,大数据业务架构师,大数据架构师,大数据算法工程师,大数据开发工程师,大数据运维工程师。不管是国内还是国外,大数据相关的人才都是供不应求的局面。目前市场急需运用大数据分析结果的大数据相关管理人才。

据数联寻英发布《大数据人才报告》显示,目前全国的大数据人才仅46万,未来3-5年内大数据人才的缺口将高达150万。

据职业社交平台LinkedIn发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中研发工程师需求量最大,而数据分析人才最为稀缺。领英报告表明,数据分析人才的供给指数最低,仅为005,属于高度稀缺。数据分析人才跳槽速度也最快,平均跳槽速度为198个月。根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。

大数据就业方向

1 Hadoop大数据开发方向

市场需求旺盛,大数据培训的主体,目前IT培训机构的重点。

对应岗位:大数据开发工程师、爬虫工程师、数据分析师等。

2 数据挖掘、数据分析&机器学习方向

学习起点高、难度大,市面上只有很少的培训机构在做。

对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等。

3 大数据运维&云计算方向

市场需求中等,更偏向于Linux、云计算学科。

对应岗位:大数据运维工程师

数据分析员属于什么专业

没有属于什么专业,一般从事的人都是统计学或者数学专业的。

数据分析师属于什么职能分类

数据分析师指的是不同行业中,专门从事行业数据蒐集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。 互联网本身具有数字化和互动性的特征,这种属性特征给数据蒐集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。在“原子世界”中,抽样调查是最经常采用的数据获取方式,主要原因就是大范围普查的成本太高——最典型的应用就是电视收视率。而在互联网时代,针对互联网行业的研究,在局部(例如某个网站或同类网站的集群)做到低成本、高效率的全样本数据采集是有可能实现的。同样,“原子世界”中的很多数据不具备连续性,而互联网世界中的数据却有可能做到连续更新,甚至实时——最典型的应用就是网站全样本、全天候数据统计和分析研究。 与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。例如,结合传统的消费心理学理论,构建丰富的互联网信息消费行为模型。 就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。数据分析师在这方面大有可为。 此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。例如,收集内容消费者信息、形成内容消费者信息数据库、根据数据库的信息与内容消费者保持即时联系、传递产品和服务的信息、数据库的更新和维护。由此,数据分析师提供的数据还将成为定制产品、个性化服务的重要依据:借助先进的数据库技术,对内容资源进行深入挖掘和多次利用,提供个人偏好的内容服务,或借助数字印刷和出版技术,实现按需生产产品并交付出版印刷。

与数据分析有关的大学专业有哪些

与数据分析有关的专业:

数学相关的专业都算,比如:统计学、应用数学、信息与计算科学等等

还有IT相关的专业,比如:计算机科学与技术、数据库

其实,想要在数据分析行业发展,现在高校也没有纯数据分析专业

而数据分析本身又是一个边缘学科,交叉学科,你选择了某个专业,但是还需要你多方面的知识储备!

数据分析师一般是什么专业如何成为数据分析师

考取项目数据分析师证书,积累经验,就可以成为项目数据分析师了

数据分析师在智联招聘里属于什么职业类别?

数据分析岗位涉及各个行业的各个类别,比如销售管理、业务支持、市场推广等等,没有特定的职业类别

大数据分析这个职位属于哪个行业

这个问题,可能是绝大部分人的疑问。

数据分析行业是属于边缘学科,交叉学科,

可以说不属于哪个行业,不属于IT,也不属于金融业

但同时也会用到IT的知识和工具,也会用到金融的原理,

还有,财务、统计、管理、营销……

有哪些大学的哪些专业是与大数据有关的??

计算机科学与技术

什么是数据分析?

数=数学、数字(来源、架构);据=凭据、依据(标准、报表);分=划分、区分(筛选、处理);析=解析、剖析(结果)。我们了解数据分析的意义之后,更需懂得数据对做好数据分析,除了具备专业的数据分析知识或技巧,学会使用好数据分析软件也是非常重要的,做起事来更能事半功倍,如大家所熟悉的TopBox(智投分析)这类软件,具有非常强的数据监测实力,以前很多需要人工提取、再计算的转化数据,现在软件能直接监测得到。

数据分析师是一个什么样的职业?

随着各行业计算机应用以及信息化水平提高,各行业企事业单位已装备了非常完备的计算机系统,搭建了畅通无阻的互联网平台,信息化“硬件”设施已初具规模,但与此同时,随着业务发展以及市场信息不断积累,商业领域和行业部门产生了大量的业务数据,很多企业信息中心或统计部门数据量非常之大已成为名副其实的信息海洋,大量的、杂乱无章的

数据以及错误的数据分析方法非但没有给企业创造竞争力,相反给企业带来人力、物力、时间巨大浪费和难以摆脱的长期压力,甚至由于误用错误的数据分析方法或使用不完整的数据,给企业发展带来负面影响或相反作用。因此,面对用于决策的有效信息隐藏在大量数据中的现实问题,如何采用正确的数据分析统计和数据挖掘方法,从大量的数据中提取对人们有价值、有意义的数据,获得有利于商业运作、提高竞争力的信息,已成为企业面临的共同问题。

为推动知识管理,挖掘数据价值,适应商业企业的市场竞争需要,同时更好的配合国家对专业技术人员进行培训的要求, 信息产业部通信行业职业技能鉴定指导中心根据国家对专业技术人员加强培训且须持证上岗等文件精神,于2005年9月正式面向全国推出了国家数据分析师认证(NTC-CCDA)培训项目。

国家数据分析认证(NTC-CCDA)课程包括数据分析思维训练、数据分析理念和误区陷阱提示、数据分析方法内容精解、数据分析工具软件应用(SPSS、Clementine、Decision Time & What If、AMOS40-50、AnswerTree30等)、市场预测分析等方面内容,它是对数据进行调查统计、分析预测、数据挖掘等一系列活动的总和,其基本目的是采用科学的正确的数据统计、分析预测、数据挖掘等方法,从大量的、杂乱无章的数据中提取对人们有价值、有意义的数据,从而提升数据价值,提高企业核心竞争力。

国家数据分析认证(NTC-CCDA)作为2005年最新的国家级认证培训项目,必将在今后相当长的一段时间内,成为非常热门的职业之一,专家预测,在今后的五年内,我国将至少需要50万名持有国家数据分析认证(NTC-CCDA)证书的数据分析专业人才。

目前, 经济部门、金融机构、投资公司以及企业统计和分析人员对国家数据分析师的需求正在与日俱增。项目数据分析行业在欧美发展得十分成熟,数据分析这一帮助企业决策的方式已经深入到各行各业。而在中国,数据分析刚刚走过了7个年头,巨大的市场潜力和人才缺口使得数据分析行业进入了发展的黄金时期,而数据分析师则成为了一个朝阳职业。数据分析如何切实地帮助企业决策?数据分析师这一新兴职业的工作性质是什么?整个行业的未来发展前景如何?近日笔者带着这些问题采访了相关人士。

●数据分析在我国属于朝阳行业

数据分析在国外广泛应用于各个领域,但在中国仍属于朝阳行业,至今刚刚走过了7个年头。“中国数据分析行业的发展大致可以分成四个阶段”, 中国商业联合会数据分析专业委员会培训处主任任彦博表示,“第一阶段可称为觉醒与前瞻。90年代,大量海外机构将西方投资决策技术引进中国,并受到中国企业和金融投资机构的广泛学习借鉴。数据分析行业到了21世纪进入到第二个阶段,迎来了数据分析师的诞生。从2004年到2010年,我国项目数据分析师人数从零起步,猛增至近万人。到了第三阶段,我国首家数据分析事务所创立。在第四个阶段中,中国商业联合会数据分析专业委员会正式成立,首届中国数据分析业峰会在京成功的举行都标志著中国数据分析行业已经进入快速发展的成长期。”

数据分析员,是做什么的,有专业要求吗? 5分

数据分析员的具体工作:笼统的说应该是负责数据的收集、各类数据整理、汇总、分析整理以及传递和管理。

不同专业数据分析所用的分析工具和方法会有所不同,所以有比较好的专业知识才比较容易上手,另外需要有计算机应用知识,数理统计,经济学,数据库原理以及相关知识;能熟练使用EXCLE、SPSS、QUANVERT、SAS等统计软件。

以上就是关于数据分析课程有哪些内容全部的内容,包括:数据分析课程有哪些内容、数据分析是什么专业、想做IT,在大学里学什么专业等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/8851063.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存