Flink流计算推送至kafka笔记

Flink流计算推送至kafka笔记,第1张

sink部分,需要自己定义的实现类有

动态topic实现类 DynKeyedSerializationSchema.java
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema;

/**
 * @Desc : 动态topic序列化(flink-util)
 * @Date : 2022/4/27 9:54
 * @Author : learnworm
 **/
public class DynKeyedSerializationSchema implements KeyedSerializationSchema {
    private static final String topic_pre = "device_sink_";
    private final SerializationSchema serializationSchema;

    public DynKeyedSerializationSchema(SerializationSchema serializationSchema) {
        this.serializationSchema = serializationSchema;
    }

    @Override
    public byte[] serializeKey(FanData fanData) {
        return new byte[0];
    }

    @Override
    public byte[] serializeValue(Device item) {
        return this.serializationSchema.serialize(item);
    }

    @Override
    public String getTargetTopic(Device item) {//自己定义规则-这里对id取hash值后除100求余再求绝对值
        String dynTopic = new StringBuffer().append(topic_pre).append(Math.abs(item.getDevId().hashCode()%100)).toString();
        return dynTopic;
    }
}
T类型序列化 DynSerializationSchema.java
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.core.JsonProcessingException;
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.kafka.clients.producer.ProducerRecord;

/**
 * @Desc : Flink计算后sink数据序列化
 * @Date : 2022/4/10 16:39
 * @Author : learnworm
 **/
public class ObjSerializationSchema implements KafkaSerializationSchema {

    private String topic;
    private ObjectMapper mapper;

    public ObjSerializationSchema(String topic) {
        super();
        this.topic = topic;
    }

    @Override
    public ProducerRecord serialize(Device item, Long timestamp) {
        byte[] b = null;
        if (mapper == null) {
            mapper = new ObjectMapper();
        }
        try {
            b= mapper.writeValueAsBytes(item);
        } catch (JsonProcessingException e) {
            // TODO
        }
        //topic动态设置不在这里,这里只起到序列化作用
        return new ProducerRecord(topic, b);
    }

}

Flink流计算完成后sink部分 *** 作addSink函数

由于 *** 作数据是一个T泛型数据,在设置一些properties属性时,需要注意一下:

key/value.serializer 值:org.apache.kafka.common.serialization.ByteArraySerializer

在一些demo中通常为String类型(org.apache.kafka.common.serialization.StringSerializer),这里没有将T转换为JSON串。

                .addSink(new FlinkKafkaProducer(topic,new DynKeyedSerializationSchema(new SerializationSchema() {
                    @Override
                    public byte[] serialize(Device item) {
                        return  new DynSerializationSchema(topic).serialize(item,System.currentTimeMillis()).value();
                    }
                }), getProperties())).setParallelism(parallelism_value);

    private Properties getProperties() {
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", kafkaAddress);
        properties.setProperty("zookeeper.connect", zookeeperAddress);
        properties.setProperty("group.id", "fan_consumer_group");
        properties.setProperty("enable-auto-commit", "true");
        properties.setProperty("auto-offset-reset", "earliest");
        properties.setProperty("key.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
        properties.setProperty("value.serializer", "org.apache.kafka.common.serialization.ByteArraySerializer");
        return properties;
    }

如何动态设定topic分区还需后续完善,这里未调用分区参数的方法,默认只有一个0号分区

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/906175.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-15
下一篇 2022-05-15

发表评论

登录后才能评论

评论列表(0条)

保存