什么人适合学习大数据开发?学大数据难吗?

什么人适合学习大数据开发?学大数据难吗?,第1张

什么人适合学习大数据开发?学大数据难吗?有不少应届大学毕业生和0基础人群选择学大数据,但是要选择零基础的大数据培训班,从Java基础开始学习,由浅入深掌握离线数据分析、实时数据分析和内存数据计算等重要内容。

应届大学生缺乏工作经验和技能,对未来没有明确的规划,对就业前景的了解也不清晰,通过学习新技能入行大数据,能够让应届大学生具备更好的上升空间,而且,大数据的未来发展前景也非常不错,应届大学生入行大数据将是一个非常好的选择。当然,应届生的理解能力强,接受新知识的速度快,也让他们能够实现更快的转型。

学习大数据前应该做哪些准备?学习大数据要做的准备:做好学习的切入点;为自己构建出一个有效的学习和交流渠道;要有一定的场景支撑。当前大数据的技术体系结构已经趋于成熟,且大数据领域对于人才的需求比较多元化,所以不同知识结构的初学者,都能够找到自己的学习切入点。

从当前大的人才需求趋势来看,大数据开发、大数据分析和大数据运维这三大类人才的需求潜力都是比较大的。对于数学基础比较扎实的初学者,建议按照大数据分析路线来制定学习计划,而对于程序设计比较感兴趣的初学者,可按照大数据开发路线来制定学习计划;对于数学基础薄弱且不喜欢编程的初学者来说,按照大数据运维路线来制定学习计划。

在学习的初期都可以从以下三个方面开始学习:

1、Linux *** 作系统

学习大数据首先要具有一定的 *** 作系统知识,由于当前的大数据开源平台往往都是基于Linux *** 作系统搭建的,所以应该重视Linux *** 作系统的学习。学习Linux *** 作系统的使用并不复杂,要重视Linux *** 作系统的资源管理方式。

2、编程语言

未来不论是从事大数据开发岗位,还是大数据分析岗位,甚至是大数据运维岗位,都需要掌握一定的编程知识。目前Java、Python、Scala、R、Go等编程语言的应用还是比较普遍的,初学者可以从Java或者是Python开始学起。

3、大数据平台

学习大数据平台是学习大数据技术的重要内容,大数据的诸多应用都是基于大数据平台展开的,学习大数据平台可以从开源大数据平台开始,比如Hadoop、Spark就是不错的选择

4、核心技术
大数据体系核心技术,包含Linux、Zookeeper、Hadoop、Redis、HDFS、MapReduce、Hive、Impala、Hue、Oozie、Flink、kafka、Spark、Scala、SparkSQL、Hbase等。同时我们也提供了机器学习以及云计算的课程为学员的日后发展和就业保驾护航。

随着国家战略支持和大数据技术的快速发展,大数据的应用场景在不断的深入,产生的影响也在不断的加大。未来几十年将由大数据驱动,大数据在促进各个领域发展的同时,也将需要更多的相关性人才。0基础学习大数据的难度是有的,但并不代表你无法实现快速的转型,选择一个合适的学习路线图学习也是可以的~

第一阶段:大数据开发入门

1、MySQL数据库及SQL语法

MySQL可以处理拥有上千万条记录的大型数据库,使用标准的SQL数据语言形式,MySQL可以安装在不同的 *** 作系统,并且提供多种编程语言的 *** 作接口,这些编程语言包括C、C++、Python、Java、Ruby等等。支持多种存储引擎。
SQL就是客户端和MySQL服务器端进行通信和沟通的语言。

2、Kettle与BI工具

Kettle作为一个端对端的数据集成平台,其部分特色功能包括:无代码拖拽式构建数据管道、多数据源对接、数据管道可视化、模板化开发数据管道、可视化计划任务、深度Hadoop支持、数据任务下压Spark集群、数据挖掘与机器学习支持。

3、Python与数据库交互

实际的生产任务中,数据几乎全部存在与数据库中,因此,与数据库的交互成为一件难以避免的事情。想要在Python代码中和mysql数据库进行交互,需要借助一个第三方的模块“pymysql”

第二阶段:大数据核心基础

1、Linux

Linux 作为 *** 作系统,本身是为了管理内存,调度进程,处理网络协议栈等等。而大数据的发展是基于开源软件的平台,大数据的分布式集群( Hadoop,Spark )都是搭建在多台 Linux 系统上,对集群的执行命令都是在 Linux 终端窗口输入的。据Linux基金会的研究,86%的企业已经使用Linux *** 作系统进行大数据平台的构建。Linux占据优势。

2、Hadoop基础

2022最新大数据Hadoop入门教程,最适合零基础自学的大数据

Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。它很擅长存储大量的半结构化的数据集。也非常擅长分布式计算——快速地跨多台机器处理大型数据集合。Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

MapReduce和Hadoop是相互独立的,实际上又能相互配合工作得很好。MapReduce是处理大量半结构化数据集合的编程模型。

3、大数据开发Hive基础

hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。

hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。Hive十分适合对数据仓库进行统计分析。

第三阶段:千亿级数仓技术

企业级在线教育项目实战(Hive数仓项目完整流程)

大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程)

以真实项目为驱动,学习离线数仓技术。建立集团数据仓库,统一集团数据中心,把分散的业务数据集中存储和处理 ;从需求调研、设计、版本控制、研发、测试到落地上线,涵盖了项目的完整工序 ;挖掘分析海量用户行为数据,定制多维数据集合,形成数据集市,供各个场景主题使用。

第四阶段:PB内存计算

1、Python编程基础+进阶

全套Python教程_Python基础入门视频教程,零基础小白自学Python必备教程

Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程

Python是基于ABC语言的发展来的,Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。

Python 语言的语法非常简洁明了,即便是非软件专业的初学者,也很容易上手,和其它编程语言相比,实现同一个功能,Python 语言的实现代码往往是最短的。

2、Spark技术栈

Spark全套视频教程,大数据spark3.2从基础到精通,全网首套基于Python语言的spark教程

Spark是大数据体系的明星产品,是一款高性能的分布式内存迭代计算框架,可以处理海量规模的数据。本课程基于Python语言学习Spark3.2开发,课程的讲解注重理论联系实际,高效快捷,深入浅出,让初学者也能快速掌握。让有经验的工程师也能有所收获。

3、大数据Flink技术栈

Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务。Flink也可以方便地和Hadoop生态圈中其他项目集成,例如Flink可以读取存储在HDFS或HBase中的静态数据,以Kafka作为流式的数据源,直接重用MapReduce或Storm代码,或是通过YARN申请集群资源等。

4.Spark离线数仓工业项目实战

全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台

通过大数据技术架构,解决工业物联网制造行业的数据存储和分析、可视化、个性化推荐问题。一站制造项目主要基于Hive数仓分层来存储各个业务指标数据,基于sparkSQL做数据分析。核心业务涉及运营商、呼叫中心、工单、油站、仓储物料。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/923249.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-16
下一篇 2022-05-16

发表评论

登录后才能评论

评论列表(0条)

保存