odata.olingo怎么从数据库中获取数据

odata.olingo怎么从数据库中获取数据,第1张

Olingo有服务端(实现OData协议)和客户端(封装OData服务 CRUD的application/atom+xml格式请求头+请求报文体).

使用EclipseLink的JPA实现来与数据库交互(后续还会与hibernate进行整合,hibernate2.3.2版本后就开始支持Olingo).

【导读】近几年来,随着人们对数据分析领域的情况愈发了解后,很多大数据分析师利用机器学习四大数据分析降维方法来解决一些数据分析过程中的难题,从而更容易更便捷的工作和避免一些工作中的重复动作和流程,今天小编就对机器学习四大数据分析降维方法进行详细解读,希望对大家有所帮助。

就像在拥挤的体育场内找到特定人物并不容易,将所有数据都放在同一个物理位置并不一定会使发现变得容易,另外由于来自原始系统的数据复制缓慢且成本高昂,因此相关数据中只有一小部分倾向于存储在湖泊中,更为复杂的是,许多公司可能拥有数百个分布在多个本地数据中心和云提供商之间的数据存储库,当涉及数据集成时,以原始格式存储数据并不会消除使数据适应每个机器学习过程的需求,相反它只是将执行该过程的负担转移给了数据科学家,尽管湖中可能具有所需的处理能力,但数据科学家通常不具备集成数据所需的技能。

过去几年中出现了一些数据准备工具,以使数据科学家可以访问简单的集成任务

更复杂的任务仍然需要高级技能。IT部门通常需要通过在数据湖中为特定的ML流程创建新的数据集来进行救援,从而大大减慢了进度,数据虚拟化的好处为了应对这些挑战,组织已开始应用新流程,例如数据虚拟化,可以提供对任何数据的单一访问点-无论位于何处,也无论其本机格式如何-都无需先将其复制到中央存储库中,提供相同物理数据的不同逻辑视图,而无需创建其他副本。这提供了一种快速而廉价的方式来提供数据的不同视图,以满足每种类型的用户和应用程序的独特需求,这些逻辑视图可以通过使用复杂的优化技术在物理数据之上应用复杂的数据转换和组合功能来创建,以实现最佳性能。

具体而言,数据虚拟化通过以下方式帮助应对两个主要挑战

数据发现使数据科学家可以访问更多数据,由于无需从原始系统复制数据集即可在系统中使用,因此添加新内容会更快,更便宜。这些工具为实际复制哪些数据提供了完全的灵活性。例如,对于某个过程,您可以选择从源实时访问所有数据,而对于另一个过程,则可以选择首先在物理存储库(例如数据湖)中实现所有必需的数据,而对于另一个过程,则可以选择可以选择仅体现一部分数据的混合策略(例如,将在流程中频繁使用或可能对许多流程有用的数据)。

提供的所有数据集提供了可搜索的,可浏览的目录

该目录包含有关每个数据集的大量元数据、标签,列说明和使用信息,例如谁使用每个数据集,何时以及如何使用,数据集的内容也可以直接从此目录中搜索和查询。

工具根据一致的数据表示和查询模型公开所有数据

这意味着无论数据最初存储在关系数据库,Hadoop集群,SaaS应用程序还是NoSQL系统中,数据科学家都可以看到所有数据,就像将其存储在单个关系数据库中一样。可以通过SQL,REST或OData等标准方法访问此“虚拟数据库”,这些方法支持包括R,Scala,Python和Spark

ML等标准工具/语言。

使IT数据架构师和数据科学家之间的职责明确,成本有效地分开

IT数据架构师可以使用DV创建“可重用的逻辑数据集”,以对许多流程有用的方式公开信息,这些逻辑数据集也不需要物理复制数据,因此与传统方法相比,创建和维护它们的工作量要少得多,然后数据科学家可以对这些可重复使用的数据集进行修改,以满足每个ML流程的需求。根据定义,可重用的逻辑数据集会处理诸如转换和性能优化之类的复杂问题,因此数据科学家可以根据需要执行最终(且更轻松)的自定义。

现代工具还包括高级管理功能

因此可以集中实施安全策略,可以保留虚拟数据集的沿袭,并且可以在多个ML流程之间重用常见的转换和计算,数据虚拟化平台还可以将ML分析的结果无缝地呈现给业务用户和应用程序,因此可以轻松地将其合并到业务流程和报告中,随着机器学习和数据湖的不断扩散并支持现代分析,数据虚拟化是大幅提高数据科学家生产率的关键,它使他们可以专注于自己的核心技能,而不是数据管理,使数据科学家可以访问更多数据并利用基于目录的数据发现,并且极大地简化了数据集成,因此组织可以真正从手头的数据中受益。

以上就是小编今天给大家整理发送的关于“机器学习四大数据分析降维方法详解”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。

这三个品类中,集成能力最强的肯定是低代码。因为只有低代码才支持通过编码的方式,无限扩展系统的能力,其中就包含做系统集成。

中国软件行业协会在《2020中国低代码开发平台十大趋势》中就提到,打通数据孤岛,低代码与业务系统的集成能力更受重视。随着各类企业系统的普及,“云端孤岛”越来越成为 2020 年企业不得不面对的一个巨大问题。相比于大型行业软件和各类互联网工具,企业对使用低代码开发出的应用提出了更高的集成性要求。因此,低代码平台必须具备与其他系统尤其是核心业务系统的集成能力,这些能力包含但不仅限于单点登录、数据库集成和 Web API 集成,这将成为 2020 年企业选择低代码平台时关注的重点。

具体信息,可以看看这个:网页链接


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10035265.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-04
下一篇 2023-05-04

发表评论

登录后才能评论

评论列表(0条)

保存