首先必须登录美国空间后台的网站控制面板, 既然有带mysql数据库, 我估计应该也有提供PHPMyAdmin功能, 通过PHPMyAdmin你必须先创建一个mysql数据库, 创建时须填写mysql数据库名字, 用户名字和密码 (这些资
在JAVA开发中数据库的学习也是我们需要了解的,截下来几篇文章都是关于数据库的设计和应用,那么java课程培训机构废话不多说开始学习吧!
数据库的设计
数据库设计是基础,数据库优化是建立在设计基础之上的。好的数据库一定拥有好的设计。
数据库设计的目标是为用户和各种应用系统提供一个信息基础设施和高效的运行环境。
数据库的三大范式
第一范式1NF:所有的域都应该是原子性的,即数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项。
第二范式2Nf:第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。
第三范式3Nf:所有字段必须与主键直接相关,而不是间接相关。也可以理解为字段不要和其他非主键字段相关
注意:这三个范式尽可能去遵守,不是一定要墨守成规这只是让我们设计的表的时候,越靠近这些范式,可以使字段尽量的减小冗余但是有时候也可以根据实际需要小小的违背一下但是第三范式违反一下还可以接受,但是第一范式别违反
数据库设计的步骤
需求分析阶段
准确了解与分析用户需求(包括数据与处理)。是整个设计过程的基础,是最困难、最耗费时间的一步。
概念结构设计阶段
是整个数据库设计的关键--设计数据库的E-R模型图,确认需求信息的正确和完整
Entity_Relationship---实体之间的关系
一对一
一对多
多对一
在开始演示之前,我们先介绍下两个概念。
概念一,数据的可选择性基数,也就是常说的cardinality值。
查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。
比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。
那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。
概念二,关于HINT的使用。
这里我来说下HINT是什么,在什么时候用。
HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。
比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?
来看下具体演示
譬如,以下两条SQL,
A:
select from t1 where f1 = 20;B:
select from t1 where f1 = 30;如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。
这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。
那回到正题上,MySQL 80 带来了几个HINT,我今天就举个index_merge的例子。
示例表结构:
mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+------------+--------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || rank1 | int(11) | YES | MUL | NULL | || rank2 | int(11) | YES | MUL | NULL | || log_time | datetime | YES | MUL | NULL | || prefix_uid | varchar(100) | YES | | NULL | || desc1 | text | YES | | NULL | || rank3 | int(11) | YES | MUL | NULL | |+------------+--------------+------+-----+---------+----------------+7 rows in set (000 sec)表记录数:
mysql> select count() from t1;+----------+| count() |+----------+| 32768 |+----------+1 row in set (001 sec)这里我们两条经典的SQL:
SQL C:
select from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;SQL D:
select from t1 where rank1 =100 and rank2 =100 and rank3 =100;表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。
那我们来看SQL C的查询计划。
显然,没有用到任何索引,扫描的行数为32034,cost为324365。
mysql> explain format=json select from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "324365" }, "table": { "table_name": "t1", "access_type": "ALL", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "rows_examined_per_scan": 32034, "rows_produced_per_join": 115, "filtered": "036", "cost_info": { "read_cost": "323207", "eval_cost": "1158", "prefix_cost": "324365", "data_read_per_join": "49K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))" } }}1 row in set, 1 warning (000 sec)我们加上hint给相同的查询,再次看看查询计划。
这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为44109,明显比之前的快了好几倍。
mysql> explain format=json select /+ index_merge(t1) / from t1 where rank1 =1 or rank2 = 2 or rank3 = 2\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "44109" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "union(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1103, "rows_produced_per_join": 1103, "filtered": "10000", "cost_info": { "read_cost": "33079", "eval_cost": "11030", "prefix_cost": "44109", "data_read_per_join": "473K" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank1` = 1) or (`ytt``t1``rank2` = 2) or (`ytt``t1``rank3` = 2))" } }}1 row in set, 1 warning (000 sec)我们再看下SQL D的计划:
不加HINT,
mysql> explain format=json select from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "53434" }, "table": { "table_name": "t1", "access_type": "ref", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "idx_rank1", "used_key_parts": [ "rank1" ], "key_length": "5", "ref": [ "const" ], "rows_examined_per_scan": 555, "rows_produced_per_join": 0, "filtered": "007", "cost_info": { "read_cost": "47884", "eval_cost": "004", "prefix_cost": "53434", "data_read_per_join": "176" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100))" } }}1 row in set, 1 warning (000 sec)加了HINT,
mysql> explain format=json select /+ index_merge(t1)/ from t1 where rank1 =100 and rank2 =100 and rank3 =100\G 1 row EXPLAIN: { "query_block": { "select_id": 1, "cost_info": { "query_cost": "523" }, "table": { "table_name": "t1", "access_type": "index_merge", "possible_keys": [ "idx_rank1", "idx_rank2", "idx_rank3" ], "key": "intersect(idx_rank1,idx_rank2,idx_rank3)", "key_length": "5,5,5", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "10000", "cost_info": { "read_cost": "513", "eval_cost": "010", "prefix_cost": "523", "data_read_per_join": "440" }, "used_columns": [ "id", "rank1", "rank2", "log_time", "prefix_uid", "desc1", "rank3" ], "attached_condition": "((`ytt``t1``rank3` = 100) and (`ytt``t1``rank2` = 100) and (`ytt``t1``rank1` = 100))" } }}1 row in set, 1 warning (000 sec)对比下以上两个,加了HINT的比不加HINT的cost小了100倍。
总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。
优化“mysql数据库”来提高“mysql性能”的方法有:
1、选取最适用的字段属性。
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。
2、使用连接(JOIN)来代替子查询(Sub-Queries)。
MySQL从41开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。
3、使用联合(UNION)来代替手动创建的临时表。
MySQL从40的版本开始支持UNION查询,它可以把需要使用临时表的两条或更多的SELECT查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。
4、事务。
要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的 *** 作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都 *** 作成功,要么都失败。
5、锁定表。
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。
6、使用外键。
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(),MIN()和ORDERBY这些命令的时候,性能提高更为明显。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。
body{
line-height:200%;
}
如何优化MySQL数据库
当MySQL数据库邂逅优化,它有好几个意思,今天我们所指的是性能优化。
我们究竟该如何对MySQL数据库进行优化呢?下面我就从MySQL对硬件的选择、Mysql的安装、myf的优化、MySQL如何进行架构设计及数据切分等方面来说明这个问题。
1服务器物理硬件的优化
1)磁盘(I/O),MySQL每一秒钟都在进行大量、复杂的查询 *** 作,对磁盘的读写量可想而知,所以推荐使用RAID10磁盘阵列,如果资金允许,可以选择固态硬盘做RAID10;
2)cpu对Mysql的影响也是不容忽视的,建议选择运算能力强悍的CPU。
2MySQL应该采用编译安装的方式
MySQL数据库的线上环境安装,我建议采取编译安装,这样性能会较大的提升。
3MySQL配置文件的优化
1)skip
-name
-resolve,禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间;
2)back_log
=
384,back_log指出在MySQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中,对于Linux系统而言,推荐设置小于512的整数。
3)如果key_reads太大,则应该把myf中key_buffer_size变大,保持key_reads/key_read_requests至少在1/100以上,越小越好。
4MySQL上线后根据status状态进行适当优化
1)打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响也会很小。
2)MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上限256,应该不会出现1040错误。比较理想的设置是:Max_used_connections/max_connections
100%
=85%
5MySQL数据库的可扩展架构方案
1)MySQL
cluster,其特点为可用性非常高,性能非常好,但它的维护非常复杂,存在部分Bug;
2)DRBD磁盘网络镜像方案,其特点为软件功能强大,数据可在底层块设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。
主要从以下角度思考优化方向:1,Mysql配置优化主要对查询缓存,mysql数据库连接时长,开启慢查询日志(开启后还要分析sql)等方面进行优化2
Myslq语句优化3
Mysql索引优化主要是需要注意索引数量和索引失效情况,重复索引4
Mysql引擎优化innodb引擎注重于事务,能保证数据一致性myisam引擎可以进行全文检索,但不是事务安全当初在黑马程序员学过,还用实例进行优化学习
在JAVA开发中数据库的学习也是我们需要了解的,截下来几篇文章都是关于数据库的设计和应用,那么java课程培训机构>
以上就是关于我需要mysql数据库参考文献全部的内容,包括:我需要mysql数据库参考文献、java课程培训机构分享Mysql数据库的设计和优化、mysql数据库怎么优化,有几方面的优化等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)