怎样使用OpenCV进行人脸识别

怎样使用OpenCV进行人脸识别,第1张

YOGUAI为保险柜,自动门,考勤等行业提供人脸识别方案。

随着计算机网络和通信技术的发展,信息安全、知识产权保护和身份认证等问题成了一个重要而紧迫的研究课题。身份认证是保证系统安全的必要前提,在多种不同的安全领域都需要准确的身份认证。传统的身份z、智能卡、密码等身份认证方法存在携带不便、容易遗失、不可读或密码易被破解等诸多问题。基于人脸识别技术的身份认证方法与传统的方法相比,具有更好的安全性、可靠性和有效性,因此正越来越受到人们的重视,并逐渐进入社会生活的各个领域。

人脸识别技术具有广泛的应用前景,可以应用到多种不同的安全领域,因其识别特征的独特性、惟一性和相对稳定性,逐渐成为一非常热门的研究课题。许多典型的人脸识别算法和应用系统都是针对标准或特定的人脸数据库,利用库内人脸进行训练,并在相同的库中实现人脸识别。但在软件保护、计算机安全等特殊应用中,身份认证仅针对单个对象进行人脸识别,现有的人脸识别方法并不能胜任这样的识别任务。为此,本文针对单对象人脸识别的特点,讨论了单对象人脸检测和识别的关键技术,在此基础上提出了一种单对象人脸识别算法,实验结果证明了该方法的有效性。

2单对象人脸识别的特点

与典型的人脸识别相比,单对象人脸识别有以下4个方面的特点:

应用领域人脸识别的应用领域很广,如刑侦破案、证件核对、保安监控等,而单对象人脸识别主要应用在软件保护、计算机安全锁、特定对象追踪等领域。

识别系统的目标单对象人脸识别的最终目标是系统必须具有高度的安全性和可靠性,即识别错误率趋于0。虽然降低识别错误率的同时识别率也会降低,但可以通过提示用户调整姿态(如注视摄像头等)加以改善。

肤色模型由于单对象人脸识别仅针对特定的对象,所以人脸检测的肤色模型可采用自适应的方法调整肤色范围。

分类方法单对象人脸识别不存在人脸数据库,常用的最小距离分类法不能够正确识别特定的对象,只能用阈值作为判据。因此,阈值的选取十分重要,阈值过大则容易出现错判,存在安全隐患;而阈值过小又会影响识别效率。

3人脸的检测和归一化

人脸检测是人脸识别的前提。对于给定的图像,人脸检测的目的在于判断图像中是否存在人脸,如果存在,则返回其位置和空间分布。利用人脸肤色和面部特征,将人脸检测分为两个阶段:外脸检测和内脸定位。外脸检测主要利用人脸肤色进行初步的脸区检测,分割出肤色区域;内脸检测是在外脸区域中利用面部几何特征进行验证和定位。

31外脸检测

外脸检测的任务是将待检图像中可能的人脸区域找出来并加以标记,其步骤如下:

(1)根据人类肤色在色彩空间中存在区域性的特点,将可能为人脸的像素检测出来。为更好地利用肤色特征,同时选用HSI和YcbCr两种色彩空间对图像进行二值化处理,肤色范围限定在H∈[0,46],S∈[010,072],Cb∈[98,130],Cr∈[128,170]内。将满足条件的像素标记为肤色像素,其余的均为非肤色像素。

(2)去噪处理。在以每一个肤色点为中心的5×5邻域内统计肤色像素的个数,超过半数时中心点保留为肤色,否则认为是非肤色。

(3)将二值图像中的肤色块作区域归并,并对目标区域进行比例、结构分析,过滤掉不可能的人脸区域。目标区域的高度/宽度比例限定在08~20。

32内脸检测和定位

将包含眼、眉、鼻和嘴的区域称为内脸区域。内脸区域能够很好地表达人脸特征,且不易受背景、头发等因素的干扰,因此内脸区域的检测和定位对后续的特征提取和识别至关重要。

在外脸区域的上半部,对二值图像进行水平方向和垂直方向的投影,确定两个包含黑点的矩形区域作为双眼的大致区域。在确定的两个区域中,对黑点进行区域膨胀,可以得到眼睛的基本轮廓和左石眼角,黑点坐标的平均值作为瞳孔的位置。

设左右瞳孔的坐标分别为(Lx,Ly)和(Rx,Ry),两个瞳孔之间的距离为d,根据人脸的几何特征,我们将内脸区域定义为:宽度=-d×16,高度=-d×18,左上角坐标为(Lx-d×03,(Ly Ry)/2-(-d)×03)。实验表明,该区域能够很好地表达人脸特征。

33内脸区域的归一化

由于各待测图像中的人脸大小具有很大的随机性,因此,有必要对内脸区域进行归一化 *** 作。人脸归一化是指对内脸区域的图像进行缩放变换,得到统一大小的标准图像,实验中,我们规定标准图像的大小为128×128。归一化处理,保证了人脸大小的一致性,体现了人脸在图像平面内的尺寸不变性。

对归一化的人脸图像,采用小波变换与DCT相结合的方法提取人脸特征。首先对人脸图像进行3层小波分解,取低频子图像LL3作为人脸特征提取的对象,从而获得每幅训练样本或测试样本的低频子图像;然后对低频子图像进行离散余弦变换(DCT),DCT系数个数与子图像的大小相等(即256),由于图像DCT变换,能量集中在低频部分,因此只取其中的136个低频系数作为特征向量。

5人脸的识别

完成训练过程并获得待测样本的特征后,即可进行人脸识别,本文采用欧氏距离进行分类。

51计算样本与平均脸的欧氏距离

用m和x表示平均脸和样本的特征向量,则样本与平均脸的欧氏距离为:

其中mk表示平均脸的第k个特征向量,xk表示待测样本的第k个特征向量。身份认证时,计算待测样本与平均脸的欧氏距离,并与特定对象的自适应阈值进行比较,将小于阈值的样本判为该对象的人脸,即认证通过。

52自适应阈值的选取

与典型的人脸识别方法不同,单对象人脸认识没有人脸数据库,不能用距离最小作为判据,只能用阈值作为判别依据。阈值的选取应兼顾识别率和识别的准确性,实验中我们取训练样本与平均脸的欧氏距离平均值作为分类阈值,即:

其中,N为训练样本数,此值不宜太小;di为第i个样本与平均脸之间的欧氏距离。

莫士特科技有限公司提供模式识别主板及解决方案。

希望采纳

1、首先建立一个人脸数据库(人脸库)。

2、比对,根据特征点编辑算法比对。

至于你说的什么系统——可以用很多种语言实现算法比对,也可以运行在很多种服务器上。

比如海鑫人脸识别SDK

一、简介

人脸识别SDK 是专为开发者设计的一个本地化的人脸识别开发包,基于北京海鑫科金高科技股份有限公司具有完全自主知识产权的国际领先人脸识别核心技术开发,包含当今国际领先的人脸检测、人脸特征抽取及人脸比对技术,可以用于1:1的身份确认和1:N的身份识别。

人脸识别SDK 为开发者提供完整的技术文档和开发示例代码,节省系统开发周期,减轻系统开发成本。

二、主要功能

人脸注册、人脸检测、人脸识别

图像质量检测

多种图像采集方式:实时视频采集(DirectShow、VFW) 、扫描设备(TWain)、数码(BMP、JPG、PNG、GIF等)

数据存储方式:文件存储、数据库

支持比对方式:1:1,1:N

输出候选人名单、置信度及人脸位置

支持单人脸单模板,单人脸多模板

三、系统环境

开发环境:Microsoft Visual Studio 6或更高

*** 作系统:Windows 2000+SP、Windows XP+SP2

最低硬件要求:CPU:P4 30GHz,内存:512MB,硬盘:400MB

四、开发帮助

完整的技术文档

VC++示例代码

人脸识别原理就是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。

人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。

人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。

人脸识别是采用的分析算法。

人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。

人脸的位置和大小和人脸的纹理信息。确定图像中人脸所在的位置和大小是人脸识别特征码中最基本的信息,人脸的纹理信息包括皮肤纹理、皱纹、色斑、痣等信息。人脸识别系统要考虑光照、素质、姿态等诸多影响因素,以获得更准确的识别结果。

特征码是一个二进制字段,一般数据库提供一个二进制字段来存储二进制数据,比如SQL Server中的BINARY,VERBINARY;MYSQL用Blob;Oracle用blob或者bfile。

以上就是关于怎样使用OpenCV进行人脸识别全部的内容,包括:怎样使用OpenCV进行人脸识别、人脸识别数据是什么、java 实现人脸的动漫化 照片用数组存还是image对象提取人脸的什么特征人脸处理常用哪些特征等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10167909.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存