大数据开发工程师,很多公司都在招聘的热门技术人才,工资也是相对于其他方向更高一些。想要成为大数据开发工程师需要掌握计算机技术、hadoop
、spark、storm开发、hive
数据库、Linux
*** 作系统等知识,具备分布式存储、分布式计算框架等技术。
2、大数据分析师
大数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用
MapReduce
写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从百度迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
大数据可视化工程师岗位职责:1、
依据产品业务功能,设计符合需求的可视化方案。2、
依据可视化场景不同及性能要求,选择合适的可视化技术。3、
依据方案和技术选型制作可视化样例。4、
配合视觉设计人员完善可视化样例。5、
配合前端开发人员将样例组件化。
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。大数据课程难度大,同时有大专本科学历要求!但工作需求大,毕业以后可以从事的岗位还是比较多的,回报高,待遇在年薪30~50万之间,如果是互联网大厂更高。大数据学习内容主要有:①JavaSE核心技术;②Hadoop平台核心技术、Hive开发、HBase开发;③Spark相关技术、Scala基本编程;④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;⑤大数据项目开发实战,大数据系统管理优化等。工作岗位列举几个热门:初级大数据离线处理,薪资10000-13000;Spark开发工程师,薪资14000-16000;Python爬虫工程师,薪资16000-20000;大数据开发工程师,薪资20000+。想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,建议实地考察对比一下。祝你学有所成,望采纳。
大数据行业就业指南:三大方向 ,十大职位。
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
十大职位:一、ETL研发;二、Hadoop开发;三、可视化(前端展现)工具开发;四、信息架构开发;五、数据仓库研究;六、OLAP开发;七、数据科学研究;八、数据预测(数据挖掘)分析;九、企业数据管理;十、数据安全研究。
岗位职责
(1)数据库的安装及日常维护、性能优化等工作;
(2)RAC、Dataguard的安装、配置及后续维护;
(3)数据库故障分析、处理以及后续改善;
(4)制定数据库的容灾、监控方案并实施,确保数据安全和业务稳定;
(5)编写数据库相关 *** 作手册及维护技术文档;
(6)负责数据库备份及恢复策略方案的制定实施,保障数据安全,提升数据服务质量。
1、首席数据官(CDO)
首席数据官的工作内容非常多,职责也很复杂,他们负责公司的数据框架搭建、数据管理、数据安全保证、商务智能管理、数据洞察和高级分析。因此,首席数据师必须个人能力出众,同时还需要具备足够的领导力和远见,找准公司发展目标,协调应变管理过程。
2、营销分析师/客户关系管理分析师
客户忠诚度项目、网络分析和物联网技术积攒了大量的用户数据,很多先进公司已经在使用相关策略来支持公司的发展计划。尤其是市场部门能够运用这些数据进行更有针对性的营销。营销分析师能够发挥他们在Excel和SQL等数据分析工具方面的专业特长,对客户进行细分,确保数字化营销能够到达目标客户群体。
3、数据工程师
随着Hadoop和非结构化数据仓库的流行,所有分析功能的第一要务就是要得到正确的数据。高水平的工程师需要掌握数据管理技能,熟悉提取转换加载过程,很多公司都急需这样的人才。事实上,很多首席数据官甚至认为,数据工程师才是大数据相关行业中最重要的职位。
4、商务智能开发工程师
商务智能开发工程师的最基本职能,是管理结构数据从数据库分配至终端用户的过程。商务智能(BI)曾经只是商务金融的基础,现在已经独立出来,成为了单独的部门,很多商务智能团队正在搭建自服务指示板,这样运营经理就能快速且有效地获取高性能数据,评价公司运营情况。
5、数据可视化
随着指示板和可视化工具的增多,商务智能“前端”研发工程师需要更熟练掌握Tableau、QlikView/QlikSense、SiSense和Looker。能够使用d3js在网络浏览器中制作数据可视化的研发工程师也越来越受到公司欢迎。很多大公司开出的年薪已经超过了7万5千英镑,平均日薪500多英镑。
6、大数据工程师
正如上文提到过的,数据工程师的工作是负责管理公司的数据,包括数据的收集,存储、处理和分析。大数据工程师需要能够搭建并维护大型异构数据框架,这些数据通常是在MongoDB等NoSQL数据库中。很多公司采用Hadoop框架和很多Hadoop次级软件包,如Hive(数据软件),Pig(数据流语言)和Spark(多编程模型)。
以上就是关于大数据的就业岗位有哪些全部的内容,包括:大数据的就业岗位有哪些、大数据专业毕业生就业岗位有哪些、大数据可以从事哪些职位,大数据就业方向有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)