/***
下面是上面的函数的辅助处理函数
***/
// 从用户提供的缓冲区中得到一个加密密钥
// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展
static unsigned char * DeriveKey(const voID *pKey,int nKeyLen);
//创建或更新一个页的加密算法索引.此函数会申请缓冲区.
static LPCryptBlock CreateCryptBlock(unsigned char* hKey,Pager *pager,LPCryp
tBlock pExisting);
//加密/解密函数,被pager调用
voID * sqlite3Codec(voID *pArg,unsigned char *data,Pgno nPageNum,int nMode)
;
//设置密码函数
int __stdcall sqlite3_key_interop(sqlite3 *db,const voID *pKey,int nKeySize)
;
// 修改密码函数
int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySiz
e);
//销毁一个加密块及相关的缓冲区,密钥.
static voID DestroyCryptBlock(LPCryptBlock pBlock);
static voID * sqlite3pager_get_codecarg(Pager *pPager);
voID sqlite3pager_set_codec(Pager *pPager,voID *(*xCodec)(voID*,voID*,Pgno,int
),voID *pCodecArg );
//加密/解密函数,int nMode)
{
LPCryptBlock pBlock = (LPCryptBlock)pArg;
unsigned int DWPageSize = 0;
if (!pBlock) return data;
// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.
if (nMode != 2)
{
PgHdr *pageheader;
pageheader = DATA_TO_PGHDR(data);
if (pageheader->pPager->pageSize != pBlock->PageSize)
{
CreateCryptBlock(0,pageheader->pPager,pBlock);
}
}
switch(nMode)
{
case 0: // Undo a "case 7" journal file encryption
case 2: //重载一个页
case 3: //载入一个页
if (!pBlock->ReadKey) break;
DWPageSize = pBlock->PageSize;
My_DeEncrypt_Func(data,DWPageSize,pBlock->ReadKey,DB_KEY_LENGTH_BYTE )
; /*调用我的解密函数*/
break;
case 6: //加密一个主数据库文件的页
if (!pBlock->WriteKey) break;
memcpy(pBlock->Data + CRYPT_OFFSET,data,pBlock->PageSize);
data = pBlock->Data + CRYPT_OFFSET;
DWPageSize = pBlock->PageSize;
My_Encrypt_Func(data,pBlock->WriteKey,DB_KEY_LENGTH_BYTE )
; /*调用我的加密函数*/
break;
case 7: //加密事务文件的页
/*在正常环境下,读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥
未必相同.
回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库
的读密钥,
这是为了保证与读取原始数据的密钥相同.
*/
if (!pBlock->ReadKey) break;
memcpy(pBlock->Data + CRYPT_OFFSET,pBlock->PageSize);
data = pBlock->Data + CRYPT_OFFSET;
DWPageSize = pBlock->PageSize;
My_Encrypt_Func( data,DB_KEY_LENGTH_BYTE );
/*调用我的加密函数*/
break;
}
return data;
}
//销毁一个加密块及相关的缓冲区,密钥.
static voID DestroyCryptBlock(LPCryptBlock pBlock)
{
//销毁读密钥.
if (pBlock->ReadKey){
sqliteFree(pBlock->ReadKey);
}
//如果写密钥存在并且不等于读密钥,也销毁.
if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){
sqliteFree(pBlock->WriteKey);
}
if(pBlock->Data){
sqliteFree(pBlock->Data);
}
//释放加密块.
sqliteFree(pBlock);
}
static voID * sqlite3pager_get_codecarg(Pager *pPager)
{
return (pPager->xCodec) ? pPager->pCodecArg: NulL;
}
// 从用户提供的缓冲区中得到一个加密密钥
static unsigned char * DeriveKey(const voID *pKey,int nKeyLen)
{
unsigned char * hKey = NulL;
int j;
if( pKey == NulL || nKeyLen == 0 )
{
return NulL;
}
hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );
if( hKey == NulL )
{
return NulL;
}
hKey[ DB_KEY_LENGTH_BYTE ] = 0;
if( nKeyLen < DB_KEY_LENGTH_BYTE )
{
memcpy( hKey,pKey,nKeyLen ); //先拷贝得到密钥前面的部分
j = DB_KEY_LENGTH_BYTE - nKeyLen;
//补充密钥后面的部分
memset( hKey + nKeyLen,DB_KEY_padding,j );
}
else
{ //密钥位数已经足够,直接把密钥取过来
memcpy( hKey,DB_KEY_LENGTH_BYTE );
}
return hKey;
}
//创建或更新一个页的加密算法索引.此函数会申请缓冲区.
static LPCryptBlock CreateCryptBlock(unsigned char* hKey,LPCryp
tBlock pExisting)
{
LPCryptBlock pBlock;
if (!pExisting) //创建新加密块
{
pBlock = sqliteMalloc(sizeof(CryptBlock));
memset(pBlock,sizeof(CryptBlock));
pBlock->ReadKey = hKey;
pBlock->WriteKey = hKey;
pBlock->PageSize = pager->pageSize;
pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFS
ET);
}
else //更新存在的加密块
{
pBlock = pExisting;
if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){
sqliteFree(pBlock->Data);
pBlock->PageSize = pager->pageSize;
pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT
_OFFSET);
}
}
memset(pBlock->Data,pBlock->PageSize + CRYPT_OFFSET);
return pBlock;
}
/*
** Set the codec for this pager
*/
voID sqlite3pager_set_codec(
Pager *pPager,
voID *(*xCodec)(voID*,int),
voID *pCodecArg
)
{
pPager->xCodec = xCodec;
pPager->pCodecArg = pCodecArg;
}
int sqlite3_key(sqlite3 *db,int nKey)
{
return sqlite3_key_interop(db,nKey);
}
int sqlite3_rekey(sqlite3 *db,int nKey)
{
return sqlite3_rekey_interop(db,nKey);
}
/*被sqlite 和 sqlite3_key_interop 调用,附加密钥到数据库.*/
int sqlite3CodecAttach(sqlite3 *db,int nDb,int nKeyLen)
{
int rc = sqlITE_ERROR;
unsigned char* hKey = 0;
//如果没有指定密匙,可能标识用了主数据库的加密或没加密.
if (!pKey || !nKeyLen)
{
if (!nDb)
{
return sqlITE_OK; //主数据库,没有指定密钥所以没有加密.
}
else //附加数据库,使用主数据库的密钥.
{
//获取主数据库的加密块并复制密钥给附加数据库使用
LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqli
te3BtreePager(db->aDb[0].pBt));
if (!pBlock) return sqlITE_OK; //主数据库没有加密
if (!pBlock->ReadKey) return sqlITE_OK; //没有加密
memcpy(pBlock->ReadKey,&hKey,16);
}
}
else //用户提供了密码,从中创建密钥.
{
hKey = DeriveKey(pKey,nKeyLen);
}
//创建一个新的加密块,并将解码器指向新的附加数据库.
if (hKey)
{
LPCryptBlock pBlock = CreateCryptBlock(hKey,sqlite3BtreePager(db->aDb
[nDb].pBt),NulL);
sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Cod
ec,pBlock);
rc = sqlITE_OK;
}
return rc;
}
// Changes the encryption key for an existing database.
int __stdcall sqlite3_rekey_interop(sqlite3 *db,int nKeySiz
e)
{
Btree *pbt = db->aDb[0].pBt;
Pager *p = sqlite3BtreePager(pbt);
LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);
unsigned char * hKey = DeriveKey(pKey,nKeySize);
int rc = sqlITE_ERROR;
if (!pBlock && !hKey) return sqlITE_OK;
//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.
if (!pBlock) //加密一个未加密的数据库
{
pBlock = CreateCryptBlock(hKey,p,NulL);
pBlock->ReadKey = 0; // 原始数据库未加密
sqlite3pager_set_codec(sqlite3BtreePager(pbt),sqlite3Codec,pBlock);
}
else // 改变已加密数据库的写密钥
{
pBlock->WriteKey = hKey;
}
// 开始一个事务
rc = sqlite3BtreeBeginTrans(pbt,1);
if (!rc)
{
// 用新密钥重写所有的页到数据库。
Pgno nPage = sqlite3PagerPagecount(p);
Pgno nSkip = PAGER_MJ_PGNO(p);
voID *pPage;
Pgno n;
for(n = 1; rc == sqlITE_OK && n <= nPage; n ++)
{
if (n == nSkip) continue;
rc = sqlite3PagerGet(p,n,&pPage);
if(!rc)
{
rc = sqlite3PagerWrite(pPage);
sqlite3PagerUnref(pPage);
}
}
}
// 如果成功,提交事务。
if (!rc)
{
rc = sqlite3BtreeCommit(pbt);
}
// 如果失败,回滚。
if (rc)
{
sqlite3BtreeRollback(pbt);
}
// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。
if (!rc)
{
if (pBlock->ReadKey)
{
sqliteFree(pBlock->ReadKey);
}
pBlock->ReadKey = pBlock->WriteKey;
}
else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。
{
if (pBlock->WriteKey)
{
sqliteFree(pBlock->WriteKey);
}
pBlock->WriteKey = pBlock->ReadKey;
}
// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。
// 销毁加密块并移除页的编解码器
if (!pBlock->ReadKey && !pBlock->WriteKey)
{
sqlite3pager_set_codec(p,NulL,NulL);
DestroyCryptBlock(pBlock);
}
return rc;
}
/***
下面是加密函数的主体
***/
int __stdcall sqlite3_key_interop(sqlite3 *db,int nKeySize)
{
return sqlite3CodecAttach(db,nKeySize);
}
// 释放与一个页相关的加密块
voID sqlite3pager_free_codecarg(voID *pArg)
{
if (pArg)
DestroyCryptBlock((LPCryptBlock)pArg);
}
#endif //#ifdef sqlITE_HAS_CODEC
五、 后记
写此教程,可不是一个累字能解释。
但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已
造福大众,大家不用再走弯路。
本人第一次写教程,不足的地方请大家指出。
本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光
。以示对我劳动的肯定
(源码网整理:www.codepub.com)
总结以上是内存溢出为你收集整理的SQLite3使用详解之三全部内容,希望文章能够帮你解决SQLite3使用详解之三所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)