wind资讯如何获得需要付费吗

wind资讯如何获得需要付费吗,第1张

wind资讯可通过官方网站获得。有些wind资讯的金融终端是付费产品需要付费,也有免费的wind资讯。

Wind资讯(万得资讯)是中国大陆领先的金融数据信息和软件服务企业,总部位于上海陆家嘴金融中心。

在金融财经数据领域,Wind资讯已建成国内最完整、最准确的以金融证券数据为核心一流的大型金融工程和财经数据仓库,数据内容涵盖股票、基金、债券、外汇、保险、期货、金融衍生品、现货交易、宏观经济、财经新闻等领域,新的信息内容在第一时间进行更新以满足机构投资者的需求。

扩展资料:

在国内市场,Wind资讯的客户包括超过90%的中国证券公司、基金管理公司、保险公司、银行和投资公司等金融企业。

在国际市场,已经被中国证监会批准的合格境外机构投资者(QFII)中75%的机构是Wind资讯的客户。同时国内多数知名的金融学术研究机构和权威的监管机构也是Wind资讯的客户,大量中英文媒体、研究报告、学术论文等经常引用Wind资讯提供的数据。

针对金融业的投资机构、研究机构、学术机构、监管部门机构等不同类型客户的需求,Wind资讯开发了一系列围绕信息检索、数据提取与分析、投资组合管理应用等领域的专业分析软件与应用工具。通过这些终端工具,用户可以7x24x365从Wind资讯获取到及时、准确、完整的财经数据、信息和各种分析结果。

精于数据,以数据为起点,万得资讯紧密跟随金融市场日新月异的发展,不断向新的领域发展,新的产品和服务战略不断在延伸。

参考资料:

百度百科-WIND资讯

大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。

从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。

扩展信息:

大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。

是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。

实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。

目前主要使用的医药数据库分为两大类,一个是免费医药数据库,一个是商业综合类的医药数据库。医药数据库的本质是让用户能在短时间内在一个网站把想要的信息通过检索一览无余,因此,全面性、准确性、及时性是该类数据库的主要指标。

先说免费医药数据库,大大小小的比较多,但真正用户量大,达到一定使用频率的,我们在此推荐三个最全面的:

①:DrugBank数据库,它是加拿大阿尔伯塔大学(University of Alberta)研究人员将详细的药物数据和全面的药物目标信息结合起来,建立的真实可靠的生物信息学和化学信息学数据库。DrugBank包含50万种药物信息,其中包括2653种经批准的小分子药物、1417种经批准的生物技术(蛋白质/肽)药物、131种营养品和6451种实验药物。

②:pharnexcloud,他目前是开放程度高的中文界面医药数据库,包含了全球药品研发管线、审评审批进度、全球临床试验、中国临床试验、药品招投标、集采、一致性评价等大量整合信息。

③:ClinicalTrials,它是一个基于网络的资源,为患者、他们的家庭成员、医疗保健专业人员、研究人员和公众提供了方便地访问关于各种疾病和病症的公共和私人支持的临床研究的信息。该网站由 美国国立卫生研究院的国家医学图书馆(NLM) 维护(NIH),美国国家医学图书馆提供的资源,探索所有 50 个州和 221 个国家/地区的 422,494 项研究。注:所有资料及相关研究仅供参考,未取得相关政府机构评定。

免费数据库涉及数据层面的关联性相对单一、数据深度存在一定局限性,毕竟这类数据库没有像商业数据库那样花上足够多的人力成本及时间成本去清洗、整理、维护数据。

商业类医药数据库往往是高价值数据库的代表。商业类医药数据库特点是功能强大不仅能对学术类信息加以融合处理,还能分析药品全生命周期数据,竞品药品销售详细情况、竞品企业招投标、投融资、集中采购信息等;除此之外还能实时跟踪产品管线最新信息,做到实时调整战略方向,防止做无用功浪费企业资源。现在商业类数据库可以说是医药企业必备的数据库。笔者就国内药企主要使用的商业医药数据库(同时对比两个国外数据库)给大家一一列举。

药融云企业版Pharnexcloud

数据全面性:★★★★★

运营企业:药融云数字科技

上线时间:2020年

数据库数量:218个

产品组成:药物研发库群、上市药品库群、药品销售库群、市场信息库群、一致性评价库群、原料药库群、医疗器械库群、生产检验库群、合理用药库群、医药文献等十个版块构成。

数据来源:各国药品监管机构、试验研究、学术会议报告、文献期刊、异构资源、企业公告各国卫生机构、医学新闻杂志、网络资讯、专利、协会学会等。

数据特色:数据采集近80个主流国家,监控全球10万+医药数据信息源,数据放大模型算法涉及人口学、经济学、发病率、医疗资源分布等各类特征参数。

增值服务:①专人对接需求,团队解决问题。②沙龙、巡讲、峰会、项目交易、需求对接等活动支持,能加入他们药融圈生态链。

优点:全面覆盖医药领域全产业链各环节,数据总量大、数据来源、专业报告、数据算法、结果展示都做得非常好。

缺点:相比较于全球顶尖的cortellis、informa等,pharnexcloud的数据展示结果关联性还有明显的进步空间。

pharnexcloud医药数据库后来居上,进步很快,近年来逐步成为国内医药企业选择较多的医药数据库,因其产品功能的全面和数据全面性得到越来越多的认可,希望能保持这个进步速度。

药智

综合性推荐指数:★★★★☆

运营企业:重庆康洲数据

上线时间:2009年

产品组成:由研发、一致性、生产、上市、市场、用药、药化、中药材、器械等九个版块组成。

数据来源:地区机构、资讯、企业公告报道、医疗会议、公司年度报告、医疗卫生机构、医学杂志、专利、商标、技术实施文件、学术会议、技术报告、科技期刊等。

数据库数量:172个

检索方式、功能点、底层数据架构、界面展示:与insight、Pharnexcloud数据库大体一致。

优点:药物综合报告、审评、临床数据都做得相当不错。而且仅此一家推出了化妆品、食品数据库。

缺点:药品销售数据起步阶段暂不够成熟,全球数据相对量少。(药品销售数据对于药品的立项调研、竞品销售分析、销售战略目标制定都是重中之重)。创新药物收录数量有待提高。

医药魔方

综合推荐指数:★★★★☆

运营企业:北京华彬立成

上线时间:2013年

数据库数量:49个

产品组成:资本透视、全球新药、全球临床、基础数据、市场洞察这五个版块构成。

数据来源:实验室研究、内部会议、专业报道、专利、商标、技术实施文件、学术会议、技术报告、科技期刊、文献、教科书、地区机构、资讯、新闻资讯、公司年度报告等。

产品亮点:资本透视和创新药物版块做得非常不错,在该领域都属于行业佼佼者。

收费:单价在国内偏高

优点:投融资版块、可视化疾病图谱和靶点整合、审评、临床等数据做充分关联、新上线的NextMed板块有一定领先性、其投融资版块做得很好。

缺点:总体数据数量偏少,药物研发也只解读了3万多个药物,比较同类产品丢失部分功能版块,全球数据不够丰富。销售数据模块虽然有,但十分封闭,无任何宣传,对其具体情况业内不了解。

医药魔方作为创新药物和医药投融资数据库目前国内用户沉积多的数据库之一,但其产品功能过于封闭,已成自己的围墙。

药渡

综合推荐指数:★★★☆

运营企业:药渡经纬信息科技

上线时间:2013年

数据库数量:132个

产品组成:由全球药物、全球器械、投资生态、临床研究、专利文献、政策法规、世界药问、数据定制八个版块构成。

数据来源:实验室研究、内部会议、专业报道、专利、商标、技术实施文件、学术会议、技术报告、科技期刊、在线数据库、在线辞典、电子书库、地区机构、资讯、企业公告报道、医疗会议等。

优点:其药物研发信息与国内审评、临床等多个库均有不错的关联,层级结构、标签及界面都做得相当不错。对生物药、化学药等细微标签做了单独优化。

缺点:目前没有药品销售数据,临床、上市药品分析等数据采集方面比较弱,总体数据量在业内偏弱。

药渡作为国内老牌医药数据库之一以全球研发数据为核心,重点发展咨询业务。缺少销售数据其核心版块数据,导致其数据业务只是一直低价在为其咨询业务做支撑。

米内

综合推荐指数:★★★★☆

运营企业:广州标点医药信息

上线时间:2010年

数据库数量:72个

产品组成:药品销售(多层格局,医院、零售)、审评进度、上市药品、临床试验、中标数据、全球新药研发、全球专利、项目进度这个七个版块构成

产品特色:国内药品销售数据领头企业,其医院销售数据以“三大终端六大市场”为基础,分层抽样多等级医院放大至全国。城市公立医院、县级公立医院、实体药店、网上药店、城市社区卫生中心、乡镇卫生院等各类维度齐备。

优点:南方所背景,医院销售数据算法和研发数据都做得非常不错。六大格局在国内首屈一指。近期上线了独家的电商类数据,虽然业界还在争议电商数据可信度,但毕竟先走出了这一步。

缺点:全面性比较弱,销售数据以外的全球数据、研发数据、审批数据相对重视程度很低,版本一直没有大的进展。

米内医药数据库南方所背景其医院销售版块覆盖面最广之一,但其它版块相对薄弱。

丁香园Insight

综合推荐指数:★★★☆

运营企业:杭州观澜网络

上线时间:2013年Insight(2006年总部)

产品组成:临床试验、申报进度、药品库、上市产品、制药企业、招投标、一致性评价、医药新闻、生物制品、全球数据等十个版块构成。

数据来源:内部会议、专业报道、专利、商标、在线数据库、在线词典、电子书库、异构资源共享平台、知识库、地区机构、资讯、企业公告报道、医疗会议、新闻资讯等。

产品特色:其界面小功能开发丰富特别是小图标的应用在国内UI设计上是好的,区别于同类产品。

检索方式、功能点、底层数据架构、界面展示:与药智数据库大体一致。

优点:搜索体验、UI界面小功能、时间轴、注册数据、国内药物审评、上市批文这些国内数据中做得非常不错。

缺点:市场和销售相关数据涉及较少,全球研发数据处于刚起步阶段(全球药物研发数据对于药企来说十分重要可谓是医药行业的风向标,在全球药物格局、药物立项调研、企业发展战略方向制定方面的重要性不言而喻)

Insight作为老牌医药数据库的典型代表,背靠丁香园集团的大树,目前国内用户沉积多的数据库之一,但因其药物研发数据版块、药品市场与销售数据起步晚,影响了其总体优势。

上海医工院PDB

综合推荐指数:★★★

运营企业:上海数图健康医药科技

上线时间:2011年

数据库数量:31个

产品组成:分为药物综合和新药研发监测两个数据库;药物综合数据库包含了国内市场、细分市场、全球市场、国内工业生产、企业经济运行五个版块;新药研发监测数据库包含了全球研发、中国研发、一致性评价、企业竞争,品种筛选分析五个版块。

数据来源:专利、商标、技术实施文件、学术会议、技术报告、科技期刊、文献、教科书、地区机构、资讯、新闻资讯、公司年度报告、pjb等。

优点:工信部背景知名度高国产医药数据库鼻祖,审评、临床等数据有不错的关联展示;新上线的RPDB零售板块有明显的优势提升;RAS医药处方分析系统具备一定独家性。

缺点:数据全面性相对不高,部分工业类数据更新较慢,UI设计过于传统。PDB作为全国老牌医药数据库之一,全球药物研发数据采集处于起步阶段,也许是底层架构设计问题单开了一个CPM(新药研发监测数据库)导致其部分关联性较差。

科睿唯安cortellis

综合推荐指数:★★★★☆

产品组成:Cortellis 数据库包含Cortellis竞争情报、Cortellis早期药物发现、CMC、仿制药、原料药、系统生物学Metacore等等多个模块,主要由竞争信息、疾病简报、监管信息、新闻、药物发现信息这几个版块构成;

数据来源:各大药品监管机构、新闻杂志、网络资讯、文献期刊、学术报告、专利商标、公司年报等。

检索方式、功能点、底层数据架构:这三个维度和informa数据库基本一致,只是样式展示风格不一样。

优点:  在展示结果关联性、专业报告、数据维度方面都做得非常好。

缺点:  缺少系统化药品销售数据,对中国企业管线监控出现不少滞后和少量错误,缺少中国药监局等数据分析。

cortellis医药数据库目前在世界医药领域知名医药数据库之一,因在国内因为其水土不服相比之下使用人群比例不是那么多。

英富曼Informa

综合推荐指数:★★★☆

产品组成:Biomedtracker、Pharmaprojects、Sitetrove、Trialtrave、Datamonitor Healthcare、In Vivo、Medtech Insight、Pink Sheet、Scrip多个版块组成。

数据来源:各国药品监管机构、医疗卫生机构、新闻杂志、网络资讯、文献期刊、学术报告、专利商标、公司年报、搜索引擎、学术会议等。

检索方式、功能点、底层数据架构:这三个维度和cortellis数据库基本一致,只是样式展示风格不一样,更符合国人使用习惯。

优点:可以综合计算药物批准通过率,数据更新历史记录,在新闻数据追溯、展示结果关联性、数据维度方面都做得很好。

缺点:没有销售数据、没有仿制药信息、缺少中国药监局数据解读,中国企业管线跟踪滞后;

Informa医药数据库当前世界主流医药数据库之一,其Pharmaprojects版块Pharnexcloud的’全球药物研发版块’被客户比较得多,因为价格和缺少国内审批等数据因此占有率偏低,目前在国内主要客户人群为高校为主。

一共写了目前国内主要使用9个主流数据库的测评,2个国外医药数据库。每个数据库都各有特色,可以根据自身情况供您选择。

先购买wind数据库,安装好wind取得使用权后,按照wind所给提示,输入账户和密码可使用wind数据库。

Wind资讯金融终端是一个集实时行情、资料查询、数据浏览、研究分析、新闻资讯为一体的金融数据库信息查询终端。为了能够方便使用以上数据库,请按下列步骤安装。

第一步:下载安装程序,并安装。

第二步:输入用户名:xxxxxx 密码:xxxxxxx登录即可。

Wind资讯金融数据库是中国大陆领先的金融数据库,在金融财经数据领域,已建成中国最完整、最准确的以金融证券数据为核心一流的大型金融工程和财经数据仓库,数据内容涵盖股票、基金、债券、外汇、保险、期货、金融衍生品、现货交易、宏观经济、财经新闻等领域。

甲骨文公司,微软公司,IBM公司,谷歌母公司,SAPSE公司,特拉华公司,贝尔数据公司,应用程序公司,Snowflake公司,新濠电子娱乐有限公司。数据库上市公司是大数据处理、管理和分析领域的领军企业,在全球范围内影响力巨大。甲骨文公司,微软公司,IBM公司等都是拥有强大的技术实力和丰富的经验,能够为企业客户提供高效、安全、可靠的数据处理和管理服务。同时,随着数字化转型和云计算技术的普及,这些公司在大数据领域的市场地位也越来越稳固。

大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。

从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。

扩展信息:

大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。

是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。

实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。

问题一:大数据都包括什么内容? 你好,

第一,你可以直接百度搜索。

第二,根据我的理解,所有你在互联网上留下的痕迹就是大数据。

比如很多购物网站,会根据你以前的购买记录,在你再次到该网站的时候,在页面底部出现“猜你喜欢”,推荐几个你可能喜欢的东西。比如淘宝、天猫、京东这些购物网站。

有时候,还会定期发邮件给你,推荐你一些商品,比如做的比较好的,像亚马逊。

希望能对你有所帮助,有什么问题我们可以继续交流

问题二:什么是大数据?大数据是什么意思? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。

大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。

大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。

大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。

互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。

大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。

商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。

数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。

在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。

数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。

商业智能的应用范围

1采购管理

2财务管理

3人力资源管理

4客户服务

5配销管>>

问题三:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。

数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

数据存取:关系数据库、NOSQL、SQL等。

基础架构:云存储、分布式文件存储等。

数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。

统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

模型预测:预测模型、机器学习、建模仿真。

结果呈现:云计算、标签云、关系图等。

要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。

第一,数据体量巨大。从TB级别,跃升到PB级别。

第二,数据类型繁多,如前文提到的网络日志、视频、、地理位置信息,等等。

第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。

第四,处理速度快。1秒定律。最后这一点也是和传统的>>

问题四:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。

大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。

大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。

当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。

而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。

问题五:大数据到底是什么东西? 基于大数据→企业网上支付与结算

基于大数据→银行的融资参考依据

基于大数据→优化库存周转

基于大数据→按需按量按地定产,高效自营

问题六:大数据时代:大数据是什么? 大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据 的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)>>

问题七:大数据是什么,干什么用的?包含哪些内容?哪些技术?解决什么问题? 大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。通过大数据分析,可以预测交通路况实况,比如百度地图的实时公交,了解客户信用,比如支付宝实名认证大数据背后的花呗借呗信用积累大数据研究显示,我国的数据总量正在以年均50%以上的速度持续增长,预计到2020年在全球的占比将达到21%。产业新形态不断出现,催生了个性化定制、智慧医疗、智能交通等一大批新技术新应用新业态。大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。

问题八:大数据可以做什么 用处太多了

首先,精准化定制。

主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提 品,最终实现供需双方的最佳匹配。

具体应用举例,也可以归纳为三类。

一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。

第二种是精准营销,现在已经比较常见的互联网营销,百度的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。

第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。

这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。

应用的第二个方向,预测。

预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。

从具体的应用上,也大概可以分为三类。

一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。

二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。

第三种是实时优化类的,比如智能线路规划,实时定价等。

问题九:大数据的内容和基本含义? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。

1、大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

2、大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。

3、大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。

4、大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。

5、大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。

6、大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。

问题十:大数据具体学习内容是啥? HADOOPP 是一个能够对大量数据进行分布式处理的软件框架。但是HADOOPP 是以一种可靠、高效、可伸缩的方式进行处理的。HADOOPP 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。HPCC高性能计算与 通信”的报告。开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理HADOOPP的批量数据。为了帮助企业用户寻找更为有效、加快HADOOPP数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。IT JOB

大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

以上就是关于wind资讯如何获得需要付费吗全部的内容,包括:wind资讯如何获得需要付费吗、大数据是指什么、2022年国内主流医药数据库有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9400415.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存