数据清洗难度取决于数据的质量,以及要完成的任务的复杂性。如果数据质量较高,而且要完成的任务并不复杂,那么对数据进行清洗的难度就会比较低;反之,如果数据质量较低,而且要完成的任务很复杂,那么对数据进行清洗的难度就会比较高。
数据清洗的过程中,要处理的问题主要有:数据质量问题,数据冗余问题,数据缺失问题,数据冲突问题以及数据格式问题等。这些问题的解决要靠数据清洗工具,例如Python、R、Excel等,或者通过硬件设备,如传感器等来实现。
因此,数据清洗并不是一件容易的事,在进行数据清洗之前,需要先了解数据的质量,以及最终要完成的任务。才能更好地评估数据清洗的难度,从而更好地选择恰当的工具和方法来完成数据清洗任务。
1、在SQL数据库管理工具中创建一个新的表格,用于存储需要清洗和处理的数据。
2、将需要清洗和处理的数据导入到中间表中。
3、对导入的数据进行清洗和处理,如去除重复数据、修正格式错误、填充缺失数据等。
4、将处理后的数据导出到目标数据库中,可以使用INSERTINTO语句将数据插入到目标数据库中。
数据清理也称为数据清理,用于检测和纠正(或删除)记录集,表或数据库中的不准确或损坏的记录。广义上讲,数据清除或清除是指识别不正确,不完整,不相关,不准确或其他有问题的数据部分,然后替换,修改或删除该脏数据。
数据清洗的意义:简单来说,通常认为数据清理是无用途的部分(不完整,不影响结果的数据)。但这是一个有价值的过程,可以帮助企业节省时间并提高效率。
数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。我们要按照一定的规则把“脏数据”“洗掉”,这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。
(3)数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
数据清洗原理
数据清洗(data cleaning),简单地讲,就是从数据源中清除错误和不一致,即利用有关技术如数理统计、数据挖掘或预定义的清洗规则等,从数据中检测和消除错误数据、不完整数据和重复数据等,从而提高数据的质量。业务知识与清洗规则的制定在相当程度上取决于审计人员的积累与综合判断能力。因此,审计人员应按以下标准评价审计数据的质量。
(一)准确性:数据值与假定正确的值的一致程度。
(二)完整性:需要值的属性中无值缺失的程度。
(三)一致性:数据对一组约束的满足程度。
(四)惟一性:数据记录(及码值)的惟一性。
(五)效性:维护的数据足够严格以满足分类准则的接受要求。
数据意味着什么
在计算机这门科学中被经常谈论到的是对资源的管理。最典型的资源就是时间、空间、能量。数据在以前并没有被认为是一种资源,而是被认为成一种使用资源的事物。现在观念中,数据已被广泛认为是一种资源,是我们可以利用并从中获得价值和知识的一种资源。将数据资源进行分析挖掘,从而使我们做出适时的、节约成本、高质量的决定和结论。
为什么要整理数据
企业认识了数据的价值,但是数据本身存在的一些特点,使得每个企业又对其头疼不已。这里想提到的其中一个特点Variety(杂)- 数据来源多种多样,数据的形式更是千奇百怪。
当与各种数据打交道的时候,通常会发现,数据本身真的不是那么友好。打个比方,如果企业想直接从业务数据库提取数据用来分析,会面临的问题是,业务数据库通常是根据业务 *** 作的需要进行设计的,遵循3NF范式,尽可能减少数据冗余,但同时也带来的负担是,表与表之间关系错综复杂。
在分析业务状况时,储存业务数据的表,与储存想要分析的角度表,很可能不会直接关联,而是需要通过多层关联来达到,这为分析增加了很大的复杂度,同时因为业务数据库会接受大量用户的输入,如果业务系统没有做好足够的数据校验,就会产生一些错误数据,比如不合法的身份z号,或者不应存在的Null值,空字符串等。
此外,随着NoSQL数据库的进一步发展,有许多数据储存在诸如MongoDB等NoSQL数据库中,多种多样的数据储存方式,也给取数带来了困难,没法简单地用一条SQL完成数据查询。就更别提机器的源日志和靠爬虫扒到的数据了。
所以整理数据的目的就是从以上大量的、结构复杂、杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据和数据结构。清洗后、保存下来真正有价值、有条理的数据,为后面做数据分析减少分析障碍。
什么是数据清洗
如何去整理分析数据,其中一个很重要的工作就是数据清洗。数据清洗是指对“脏”数据进行对应方式的处理,脏在这里意味着数据的质量不够好,会掩盖数据的价值,更会对其后的数据分析带来不同程度的影响。有调查称,一个相关项目的进展,80%的时间都可能会花费在这个工作上面。因为清洗必然意味着要对数据有一定的理解,而这个工作是自动化或者说计算机所解决不了的难题,只能靠人脑对数据进行重新审查和校验,找到问题所在,并通过一些方法去对对应的数据源进行重新整理。
MicroStrategy通过长期思考和解决企业面对的众多复杂应用场景,深入开发各种辅助功能帮助用户去深度体验连接数据和整理数据,使其模型可以支持一站式连接各种类型数据资源,包括各类型文本文件,超过 70 个 RDBMS、多维表达式 (MDX) 多维数据集源、Hadoop 系统和云端数据源。MicroStrategy凭借开箱即用数据连接和本机驱动,同时也提供将不同数据源数据进行融合,清除用户和数据源之间的障碍。
1在控制面板卸载ORAcle,sqplus等等
2删除根目录下Oracle文件,路径为C:\programfiles\oracle
3删除安装的Oracle数据库内容盘里面的app内容,路径为:计算机\安装盘\app
4删除注册表,打开注册表,在开始栏输入regedit,找到HKEY_LOCLE_MACHINE,再找到SYSTEM,再点开Controlset002,找到services,找到ORACLe,删除
以上就是关于oracle数据清洗难不难全部的内容,包括:oracle数据清洗难不难、sql如何建立中间表并接入数据清洗数据库、数据清洗的意义等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)