首先我们说一说大数据分析,现在的大数据分析体系以Hadoop生态为主,而近年来逐渐火热的Spark技术也是主要的生态之一。可以这么说,Hadoop技术只能算是以HDFS+YARN作为基础的分布式文件系统,而不是数据库。我们提到的Hadoop的历史可以向前追溯10年,当年谷歌为了在几万台PC服务器上构建超大数据集合并提供极高性能的并发访问能力,从而发明了一种新的技术,而这个技术,也是Hadoop诞生的理论基础。如果我们从Hadoop的诞生背景可以看出,其主要解决的问题是超大规模集群下如何对非结构化数据进行批处理计算。实际上,在Hadoop架构中,一个分布式任务可以是类似传统结构化数据的关联、排序、聚集 *** 作,也可以是针对非结构化数据的用户自定义程序逻辑。
那么Hadoop的发展道路是什么样的呢。最开始的Hadoop以Big、Hive和MapReduce三种开发接口为代表,分别适用于脚本批处理、SQL批处理以及用户自定义逻辑类型的应用。而Spark的发展更是如此,最开始的SparkRDD几乎完全没有SQL能力,还是套用了Hive发展出的Shark才能对SQL有了一部分的支持。但是,随着企业用户对Hadoop的使用越发广泛,SQL已经渐渐成为大数据平台在传统行业的主要访问方式之一。
下面我们就说一说分布式数据库,分布式数据库有着悠久的历史,从以Oracle RAC为代表的联机交易型分布式数据库,到IBM DB2 DPF统计分析性分布式数据库,分布式数据库覆盖了OLTP与OLAP几乎全部的数据应用场景。而大部分分布式数据库功能集中在结构化计算与在线增删改查上。但是,这些传统的分布式数据库以数仓及分析类OLAP系统为主,其局限性在于,其底层的关系型数据库存储结构在效率上并不能满足大量高并发的数据查询以及大数据数据加工和分析的效率要求。因此,分布式数据库在近几年也有着极大的转型,从单一的数据模型向多模的数据模型转移,将OLTP、联机高并发查询以及支持大数据加工和分析结合起来,不再单独以OLAP作为设计目标。同时,分布式数据库在访问模式上也出现了K/V、文档、宽表、图等分支,支持除了SQL查询语言之外的其他访问模式,大大丰富了传统分布式数据库单一的用途。一般来说,多模数据库的主要目的是为了满足具有高性能要求的 *** 作型需求以及目标明确的数据仓库功能,而不是类似大数据深度学习等数据挖掘场景。这就是分布式数据库的实际情况。
我们在这篇文章中给大家介绍了大数据分析以及分布式数据库的相关知识,通过这些内容相信大家已经理解了其中的具体区别了吧,如果这篇文章能够帮助到大家这就是我们最大的心愿。
现在大数据是一个十分火热的技术,这也使得很多人都开始关注大数据的任何动态,因为大数据在某种程度上来说能够影响我们的生活。在这篇文章中我们就给大家介绍一下大数据的分布式数据库的发展趋势,希望这篇文章能够帮助大家更好理解大数据的分布式数据库的发展趋势。其实不论是Hadoop还是分布式数据库,技术体系上两者都已经向着计算存储层分离的方式演进。对于Hadoop来说这一趋势非常明显,HDFS存储与YARN调度计算的分离,使得计算与存储均可以按需横向扩展。而分布式数据库近年来也在遵循类似的趋势,很多数据库已经将底层存储与上层的SQL引擎进行剥离。传统的XML数据库、OO数据库、与pre-RDBMS正在消亡;新兴领域文档类数据库、图数据库、Table-Style数据库与Multi-Model数据库正在扩大自身影响;传统关系型数据库、列存储数据库、内存分析型数据库正在考虑转型。可以看到,从技术完整性与成熟度来看,Hadoop确实还处于相对早期的形态。直到今天,很多技术在很多企业应用中需要大量的手工调优才能够勉强运行。同时,Hadoop的主要应用场景一直以来面向批处理分析型业务,传统数据库在线联机处理部分不是其主要的发展方向。同时Hadoop技术由于开源生态体系过于庞大,同时参与改造的厂商太多,使得用户很难完全熟悉整个体系,这一方面大大增加了开发的复杂度,提升了用户使用的难度,另一方面则是各个厂商之间维护不同版本,使得产品的发展方向可能与开源版本差别逐渐加大。
而分布式数据库领域经历了几十年的磨练,传统RDBMS的MPP技术早已经炉火纯青,在分类众多的分布式数据库中,其主要发展方向基本可以分为“分布式联机数据库”与“分布式分析型数据库”两种。对比Hadoop与分布式数据库可以看出,Hadoop的产品发展方向定位,与分布式数据库中列存储数据库相当重叠而在高并发联机交易场景,在Hadoop中除了HBase能够勉强沾边以外,分布式数据库则占据绝对的优势。目前,从Hadoop行业的发展来看,很多厂商而是将其定位改变为数据科学与机器学习服务商。因此,从商业模式上看以Hadoop分销的商业模式基本已经宣告结束,用户已经体验到维护整个Hadoop平台的困难而不愿被强迫购买整个平台。大量用户更愿意把原来Hadoop的部件拆开灵活使用,为使用场景和结果买单,而非平台本身买单。另外一个细分市场——非结构化小文件存储,一直以来都是对象存储、块存储,与分布式文件系统的主战场。如今,一些新一代数据库也开始进入该领域,可以预见在未来的几年中,小型非结构化文件存储也可能成为具备多模数据处理能力的分布式数据库的战场之一。
我们在这篇文章中给大家介绍了很多有关大数据分布数据库的发展前景,通过这篇文章我们不难发现数据库的发展是一个极其重要的内容,只有搭建分布式数据库,大数据才能够更好地为我们服务。
分布式数据库是指利用高速计算机网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库。分布式数据库的基本思想是将原来集中式数据库中的数据分散存储到多个通过网络连接的数据存储节点上,以获取更大的存储容量和更高的并发访问量。近年来,随着数据量的高速增长,分布式数据库技术也得到了快速的发展,传统的关系型数据库开始从集中式模型向分布式架构发展,基于关系型的分布式数据库在保留了传统数据库的数据模型和基本特征下,从集中式存储走向分布式存储,从集中式计算走向分布式计算。
另一方面,随着数据量越来越大,关系型数据库开始暴露出一些难以克服的缺点,以NoSQL 为代表的非关系型数据库,其高可扩展性、高并发性等优势出现了快速发展,一时间市场上出现了大量的key-value 存储系统、文档型数据库等NoSQL 数据库产品。NoSQL 类型数据库正日渐成为大数据时代下分布式数据库领域的主力。
这种组织数据库的方法克服了物理中心数据库组织的弱点。 首先,降低了数据传送代价,因为大多数的对数据库的访问 *** 作都是针对局部数据库的,而不是对其他位置的数据库访问; 其次,系统的可靠性提高了很多,因为当网络出现故障时,仍然允许对局部数据库的 *** 作,而且一个位置的故障不影响其他位置的处理工作,只有当访问出现故障位置的数据时,在某种程度上才受影响; 第三,便于系统的扩充,增加一个新的局部数据库,或在某个位置扩充一台适当的小型计算机,都很容易实现。然而有些功能要付出更高的代价。例如,为了调配在几个位置上的活动,事务管理的性能比在中心数据库时花费更高,而且甚至抵消许多其他的优点。 分布式软件系统(Distributed Software Systems)是支持分布式处理的软件系统,是在由通信网络互联的多处理机体系结构上执行任务的系统。它包括分布式 *** 作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。
分布式 *** 作系统负责管理分布式处理系统资源和控制分布式程序运行。它和集中式 *** 作系统的区别在于资源管理、进程通信和系统结构等方面。 分布式程序设计语言用于编写运行于分布式计算机系统上的分布式程序。一个分布式程序由若干个可以独立执行的程序模块组成,它们分布于一个分布式处理系统的多台计算机上被同时执行。它与集中式的程序设计语言相比有三个特点:分布性、通信性和稳健性。 分布式文件系统具有执行远程文件存取的能力,并以透明方式对分布在网络上的文件进行管理和存取。 分布式数据库系统由分布于多个计算机结点上的若干个数据库系统组成,它提供有效的存取手段来 *** 纵这些结点上的子数据库。分布式数据库在使用上可视为一个完整的数据库,而实际上它是分布在地理分散的各个结点上。当然,分布在各个结点上的子数据库在逻辑上是相关的。
Hadoop的分布式文件系统HDFS,作为开源的分布式平台,为目前流行的很多分布式数据库提供了支持,譬如HBase等。Yonghong的分布式文件系统ZFS,为分布式数据集市Z-DataMart提供了底层平台。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)