事务锁是为了应对并发问题的一种解决机制,在事务获取数据块当前状态的依赖关系(如通过读取或修改数据)之前,它必须保护自己不受其他事务对同一数据进行修改的影响,事务通过请求锁定数据块来达到此目的。
1锁模式如果某个事务已获得特定数据的锁,则其他事务不能获得与该锁模式发生冲突的锁。如果事务请求的锁模式与已授予同一数据的锁发生冲突,则数据库引擎实例将暂停事务请求直到第一个锁被释放。锁有多种模式,包括共享锁、更新锁、排他锁等。
(1)共享锁(S锁)共享锁允许并发事务在封闭式并发事务下读取资源。有关详细信息,请参阅“213并发事务”的类型。资源上存在共享锁时,任何其他事务都不能修改数据。读取 *** 作一完成,就立即释放资源上的共享锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务持续时间内用锁定提示保留共享锁。
2)更新锁(U锁)更新锁是共享锁和排他锁的混合型锁,更新锁意味着在做一个更新时,一个共享锁在扫描完成符合条件的数据后可能会转化成排他锁。这里面有两个步骤:((1)扫描获取Where条件时,这部分是一个更新查询,此时是一个更新锁。
(2)如果将执行写入更新,此时该锁升级到排他锁;否则,该锁转变成共享锁。
3)排他锁(X锁)排他锁可以防止并发事务对资源进行访问,不与其他任何锁兼容。使用排他锁时,任何其他事务都无法修改数据;仅在未提交读隔离级别时才会被其他事务读取占有的数据资源。
2死锁死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者彼此通信而造成的一种阻塞的现象,若无外力作用,它们将无法推进下去,此时称系统处于死锁状态或系统产生了死锁。这些永远在互相等待的进程称为死锁进程。下面从死锁产生的原因、条件及预防措施等方面来研究事务的死锁。
(1)死锁产生的原因当两个或多个进程各自具有某个资源的锁定,但其他进程尝试要锁定此资源,而造成进程永久封锁彼此时,会发生死锁。例如,事务A取得数据列1的排他锁定,事务B取得数据列2的排他锁定,事务A现在要求取得数据列2的独占锁定,事务B现在要求取得数据列1的独占锁定。事务A与事务B均需要独占数据列1与数据列2的资源,但两个资源分别被两个事务各占一个,互相等待对方的占据的资源才能完成本身的事务,就会造成事务间进程的死锁。
2)死锁产生的条件虽然进程在运行过程中可能发生死锁,但死锁的发生也必须具备一定的条件。死锁的发生必须具备以下四个必要条件。
((1)互斥条件。互斥条件指进程对所分配到的资源进行排他性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其他进程请求资源,则请求者只能等待,直至占有资源的进程用完释放。
(2)请求和保持条件。请求和保持条件指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其他进程占有,此时请求进程阻塞,但又对自己已获得的其他资源保持不放。
(3)不剥夺条件。不剥夺条件指进程已获得的资源在未使用完之前不能被剥夺,只能在使用完时由自己释放。
(4)环路等待条件。环路等待条件指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合{P0,P1,P2,…,Pn}中的P0正在等待一个P1占用的资源;P1正在等待P2占用的资源;…;Pn正在等待已被P0占用的资源。死锁的预防措施理解了死锁的原因,尤其是产生死锁的四个必要条件,就可以最大可能地避免、预防和解除死锁。只要打破四个必要条件之一就能有效预防死锁的发生。
((1)打破互斥条件。改造独占性资源为虚拟资源,但大部分资源已无法改造。
(2)打破不可抢占条件。当一进程占有一独占性资源后又去申请另一独占性资源而无法满足时,则退出原占有的资源。
(3)打破占有且申请条件。采用资源预先分配策略,即进程运行前申请全部资源,满足则运行,不满足就等待,这样就不会出现占有部分资源后再去申请其他资源的场景。
(4)打破循环等待条件。实现资源有序分配策略,对所有设备实现分类编号,所有进程只能采用按序号递增的形式申请资源。
所以,在系统设计、进程调度等方面要注意如何不让这四个必要条件成立,如何确定资源的合理分配算法,避免进程永久占据系统资源。此外,也要防止进程在处于等待状态的情况下占用资源,在系统运行过程中,对进程发出的每一个系统能够满足的资源申请进行动态检查,并根据检查结果决定是否分配资源,若分配后系统可能发生死锁,则不予分配;否则予以分配。因此,对资源的分配要给予合理的规划。
方法:
1。
改表法。可能是你的帐号不允许从远程登陆,只能在
localhost
。这个时候只要在localhost的那台电脑,登入mysql后,更改
"mysql"
数据库里的
"user"
表里的
"host"
项,从"localhost"改称"%"
mysql
-u
root
-pvmwaremysql>use
mysql;mysql>update
user
set
host
=
'%'
where
user
=
'root';mysql>select
host,
user
from
user;
2
授权法
。例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
如何处理大量数据并发 *** 作
文件缓存,数据库缓存,优化sql,数据分流,数据库表的横向和纵向划分,优化代码结构!
锁述的概
一 为什么要引入锁
多个用户同时对数据库的并发 *** 作时会带来以下数据不一致的问题:
丢失更新
A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统
脏读
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致
不可重复读
A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致
并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些 *** 作以避免产生数据不一致
二 锁的分类
锁的类别有两种分法:
1 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁
MS-SQL Server 使用以下资源锁模式。
锁模式 描述
共享 (S) 用于不更改或不更新数据的 *** 作(只读 *** 作),如 SELECT 语句。
更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。
排它 (X) 用于数据修改 *** 作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。
意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。
架构锁 在执行依赖于表架构的 *** 作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。
大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。
共享锁
共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。
更新锁
更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此 *** 作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。
若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。
排它锁
排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。
意向锁
意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁 以确定事务是否可以锁定整个表。
处理大量数据并发 *** 作可以采用如下几种方法:
1使用缓存:使用程序直接保存到内存中。或者使用缓存框架: 用一个特定的类型值来保存,以区别空数据和未缓存的两种状态。
2数据库优化:表结构优化;SQL语句优化,语法优化和处理逻辑优化;分区;分表;索引优化;使用存储过程代替直接 *** 作。
3分离活跃数据:可以分为活跃用户和不活跃用户。
4批量读取和延迟修改: 高并发情况可以将多个查询请求合并到一个。高并发且频繁修改的可以暂存缓存中。
5读写分离: 数据库服务器配置多个,配置主从数据库。写用主数据库,读用从数据库。
6分布式数据库: 将不同的表存放到不同的数据库中,然后再放到不同的服务器中。
7NoSql和Hadoop: NoSql,not only SQL。没有关系型数据库那么多限制,比较灵活高效。Hadoop,将一个表中的数据分层多块,保存到多个节点(分布式)。每一块数据都有多个节点保存(集群)。集群可以并行处理相同的数据,还可以保证数据的完整性。
:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
参考资料:网页链接
最常用的技术是封锁技术,也可以用其他技术,例如在分布式数据库系统中可以采用时间戳方法来进行并发控制。具体的你可以去这个网址看看>
数据库事务并发带来的问题有:更新丢失、脏读、不可重复读、幻象读。假设张三了一张招商yhk,余额100元,分别说明上述情况。1、更新丢失:一个事务的更新覆盖了另一个事务的更新。事务A:向yhk存钱100元。事务B:向yhk存钱200元。A和B同时读到yhk的余额,分别更新余额,后提交的事务B覆盖了事务A的更新。更新丢失本质上是写 *** 作的冲突,解决法是一个一个地写。2、脏读:一个事务读取了另一个事务未提交的数据。事务A:张三妻子给张三转账100元。事务B:张三查询余额。事务A转账后(还未提交),事务B查询多了100元。事务A由于某种问题,比如超时,进行回滚。事务B查询到的数据是假数据。脏读本质上是读写 *** 作的冲突,解决法是写完之后再读。3、不可重复读:一个事务两次读取同一个数据,两次读取的数据不一致。事务A:张三妻子给张三转账100元。事务B:张三两次查询余额。事务B第一次查询余额,事务A还没有转账,第二次查询余额,事务A已经转账了,导致一个事务中,两次读取同一个数据,读取的数据不一致。不可重复读本质上是读写 *** 作的冲突,解决法是读完再写。4、幻象读:一个事务两次读取一个范围的记录,两次读取的记录数不一致。事务A:张三妻子两次查询张三有几张yhk。事务B:张三新一张yhk。事务A第一次查询yhk数的时候,张三还没有新yhk,第二次查询yhk数的时候,张三已经新了一张yhk,导致两次读取的yhk数不一样。幻象读本质上是读写 *** 作的冲突,解决法是读完再写。
以上就是关于事务锁与并发问题是什么关系全部的内容,包括:事务锁与并发问题是什么关系、为什么说采用事务和锁机制可以解决数据库系统中的并发性问题、耗时的并发写 *** 作怎么防止数据重复等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)