摘要 结合DB 的使用经验 从数据库设计 查询优化 并发控制 客户/服务器模式四个方面来讨论数据库应用系统性能优化的一些原则 方法等
关键词 DB 性能优化 数据库设计 查询优化 并发控制 C/S模式
引言
DB 是一种高性能的大型关系数据库管理系统 广泛的应用在客户/服务器体系结构中 评价系统性能优化的标准有 吞吐量 响应时间 并行能力等 本文从数据库的设计 查询的优化 并发控制以及客户/服务器模式这四个角度来讨论优化系统性能
设计数据库
熟悉业务系统
对业务系统的熟悉程度对整个数据库系统的性能有很大影响 一个对业务不熟悉的设计人员 尽管有丰富的数据库知识 也很难设计出性能最佳的数据库应用系统
规范化与非规范化
数据库被规范化后 减少了数据冗余 数据量变小 数据行变窄 这样DB 的每一页可以包括更多行 那么每一区里的数据量更多 从而加速表的扫描 改进了单个表的查询性能 但是 当查询涉及多个表的时候 需要用很多连接 *** 作把信息从各个表中组合在一起 导致更高的CPU和I/O花销 那么 有很多时候需要在规范化和非规范化之间保持平衡 用适当的冗余信息来减少系统开销 用空间代价来换取时间代价 有订单信息表OrderDetail 它里面记录了投递员信息 收款员信息 物品信息 价格策略 客户信息… 这些信息分别在投递员信息表 收款员信息表 物品信息表 价格策略表 客户信息表中存放 如果按照规范化的要求 OrderDetail查询时就必须要与这么多个表进行连接或者嵌套查询 如果OrderDetail表中的数据量是在百万级的 那么一次查询所需要的时间可能会达到好几个小时 事实上 只要在设计时保证数据的逻辑有效性 很多信息都可以直接冗余在OrderDetail表中 这些冗余的数据能够极大的提高查询的效率 从而减少CPU和I/O *** 作
数据条带化
如果一个表的记录条数超过一定的规模 那么最基本的查询 *** 作也会受到影响 需要将该表根据日期水平划分 把最近 最经常用的数据和历史的 不经常用的数据划分开来 或是根据地理位置 部门等等进行划分 还有一种划分方式――垂直划分 即把一个属性列很多的表分割成好几个小表 比如把经常用到的属性放在一个表里 不经常用到的属性放在另一个表里 这样可以加快表的扫描 提高效率
选择数据类型
对每一属性选择什么样的数据类型很大程度上依据表的要求 但是在不违背表要求的前提下 选择适当的数据类型可以提高系统性能 比如有text列存放一本书的信息 用BLOB而不是character( ) BLOB存放的是指针或者文件参照变量 真正的文本信息可以放在数据库之外 从而减少数据库存储空间 使得程序运行的速度提高 DB 提供了UDT(User Defined Datatypes)功能 用户可以根据自己的需要定义自己的数据类型
选择索引
索引是数据库中重要的数据结构 它的根本目的就是为了提高查询效率 现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构 使用索引可以快速 直接 有序的存取数据 索引的建立虽然加快了查询 另一方面却将低了数据更新的速度 因为新数据不仅要增加到表中 也要增加到索引中 另外 索引还需要额外的磁盘空间和维护开销 因此 要合理使用索引
●在经常进行连接 但是没有指定为外键的属性列上建立索引
●在频繁进行排序或分组(即进行group by或order by *** 作)的列上建立索引 按索引来排序或分组 可以提高效率
●在条件表达式中经常用到的不同值较多的列上建立检索 在不同值少的列上不要建立索引
●如果待排序的列有多个 可以在这些列上建立复合索引(pound index) 即索引由多个字段复合而成
查询优化
现在的数据库产品在系统查询优化方面已经做得越来越好 但由于用户提交的SQL语句是系统优化的基础 很难设想一个原本糟糕的查询计划经过系统的优化之后会变得高效 因此用户所写语句的优劣至关重要 下面重点说明改善用户查询计划的解决方案
. 排序
在很多时候 应当简化或避免对大型表进行重复的排序 当能够利用索引自动以适当的次序产生输出时 可以避免排序的步骤 当以下的情况发生时 排序就不能省略
●索引中不包括一个或几个待排序的列
●group by或order by子句中列的次序与索引的次序不一样
●排序的列来自不同的表
为了避免不必要的排序 就要正确地增建索引 合理地合并数据库表 尽管有时可能影响表的规范化 但相对于效率的提高是值得的 如果排序不可避免 那么应当试图简化它 如缩小排序列的范围等
. 主键
主键用整型会极大的提高查询效率 而字符型的比较开销要比整型的比较开销大很多 用字符型数据作主键会使数据插入 更新与查询的效率降低 数据量小的时候这点降低可能不会被注意 可是当数据量大的时候 小的改进也能够提高系统的响应速度
. 嵌套查询
在SQL语言中 一个查询块可以作为另一个查询块中谓词的一个 *** 作数 因此 SQL查询可以层层嵌套 例如在一个大型分布式数据库系统中 有订单表Order 订单信息表OrderDetail 如果需要两表关联查询
SELECT CreateUserFROM Order WHERE OrderNo IN(SELECT OrderNoFROM OrderDetail WHERE Price= )
在这个查询中 找出报纸单价为 元的收订员名单 下层查询返回一组值给上层查询 然后由上层查询块再根据下层块提供的值继续查询 在这种嵌套查询中 对上层查询的每一个值OrderNo 下层查询都要对表OrderDetail进行全部扫描 执行效率显然不会高 在该查询中 有 层嵌套 如果每层都查询 行 那么这个查询就要查询 万行数据 在系统开销中 对表Order的扫描占 % 对表OrderDetail的搜索占 % 如果我们用连接来代替 即
SELECT CreateUserFROM Order OrderDetailWHERE Order OrderNo=OrderDetail OrderNo AND Praice=
那么对表Order的扫描占 % 对表OrderDetail的搜索占 %
而且 一个列的标签同时在主查询和where子句中的查询中出现 那么很可能当主查询中的列值改变之后 子查询必须重新查询一次 查询嵌套层次越多 效率越低 因此应当尽量避免子查询 如果子查询不可避免 那么要在子查询中过滤掉尽可能多的行
. 通配符
在SQL语句中 LIKE关键字支持通配符匹配 但这种匹配特别耗费时间 例如 SELECT FROM Order WHERE CreateUser LIKE M_ _ _ 即使在CreateUser字段上建立了索引 在这种情况下也还是采用顺序扫描的方式 Order表中有 条记录 就需要比较 次 如果把语句改为SELECT FROM Order WHERE CreateUser > M AND CreateUser < N 在执行查询时就会利用索引来查询 显然会大大提高速度
. distinct
使用distinct是为了保证在结果集中不出现重复值 但是distinct会产生一张工作表 并进行排序来删除重复记录 这会大大增加查询和I/O的 *** 作次数 因此应当避免使用distinct关键字
. 负逻辑
负逻辑如!= <> not in等 都会导致DB 用表扫描来完成查询 当表较大时 会严重影响系统性能 可以用别的 *** 作来代替
. 临时表
使用临时表时数据库会在磁盘中建立相应的数据结构 因为内存的访问速度远远大于外部存储器的访问速度 在复杂查询中使用临时表时 中间结果会被导入到临时表中 这种磁盘 *** 作会大大降低查询效率 另外 在分布式系统中 临时表的使用还会带来多个查询进程之间的同步问题 所以 在进行复杂查询时最好不要使用临时表
. 存储过程
DB 中的Stored Procedure Builder可以产生存储过程 运行并测试存储过程 存储过程可以包含巨大而复杂的查询或SQL *** 作 经过编译后存储在DB 数据库中 用户在多次使用同样的SQL *** 作时 可以先把这些SQL *** 作做成存储过程 在需要用到的地方直接引用其名字进行调用 存储过程在第一次执行时建立优化的查询方案 DB 将查询方案保存在高速缓存里 以后调用运行时可以直接从高速缓存执行 省去了优化和编译的阶段 节省了执行时间 从而提高效率和系统利用率
最优的查询方案按照某些标准选择往往不可行 要根据实际的要求和具体情况 通过比较进行选择 DB 提供的Query Patroller可以对不同的查询方案的查询代价进行比较 通过追踪查询语句 返回查询不同阶段的系统开销 从而作出最佳选择 DB 提供的Performance Monitor也对整个数据库系统的性能进行监控 包括I/O时间 查询次数 排序时间 同步读写时间等等
数据库系统的并发控制也能影响系统性能 多个用户的同时 *** 作可能导致数据的不一致性 DB 为了防止同时修改造成数据丢失和访问未被提交的数据 以及数据的保护读 采用Lock机制来实现控制
lishixinzhi/Article/program/DB2/201311/21921
数据库的多表大数据查询应如何优化?
1应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
2应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
3应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
4in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:
select id from t where num in(1,2,3)
对于连续的数值,能用 beeen 就不要用 in 了:
select id from t where num beeen 1 and 3
5尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT FROM T1 WHERE NAME LIKE ‘%L%’
SELECT FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快 *** 作,引擎不得不对全表所有数据逐条 *** 作来完成任务。而第三个查询能够使用索引来加快 *** 作。
6必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
7应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT FROM T1 WHERE F1/2=100
应改为:
SELECT FROM T1 WHERE F1=1002
SELECT FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’
应改为:
SELECT FROM RECORD WHERE CARD_NO LIKE ‘5378%’
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的 *** 作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将 *** 作移至等号右边。
8应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
9不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11很多时候用 exists是一个好的选择:
elect num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=anum)
SELECT SUM(T1C1)FROM T1 WHERE(
(SELECT COUNT()FROM T2 WHERE T2C2=T1C2>0)
SELECT SUM(T1C1) FROM T1WHERE EXISTS(
SELECT FROM T2 WHERE T2C2=T1C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。
Java怎么把数据库的数据查询Statement stmt = null;
ResultSet rs = null;
String query = "select 列名 from 表名 where id=11 and fname='xx' order by 列名 desc limit 1";
stmt = conncreateStatement();
rs = stmtexecuteQuery(query);
if (rsnext()) {
result = rsgetInt("列名");
}
数据库表内数据查询楼上的 拼写错误,我来修正 ^^
select count() from 表名
如何查询大数据库数据存在传统数据库处理大数据很困难吧,不建议使用传统数据库来处理大数据。
建议研究下,Hadoop,Hive等,可处理大数据。
如果有预算,可以使用一些商业大数据产品,国内的譬如永洪科技的大数据BI产品,不仅能高性能处理大数据,还可做数据分析。
当然如果是简单的查询,传统数据库如果做好索引,可能可以提高性能。
如何实现不同数据库的数据查询分页有两种方法
方法1:
select 100 from tbllendlist where fldserialNo not in ( select 300100 fldserialNo from tbllendlist order by fldserialNo ) order by fldserialNo
方法2:
SELECT TOP 100 FROM tbllendlist WHERE (fldserialNo > (SELECT MAX(fldserialNo) FROM (SELECT TOP 300100 fldserialNo FROM tbllendlist ORDER BY fldserialNo) AS T)) ORDER BY fldserialNo
如何提高Oracle数据库数据查询的命中率影响命中率的因素有四种:字典表活动、临时段活动、回滚段活动、表扫描, 应用DBA可以对这四种因素进行分析,找出数据库命中率低的症结所在。 1)字典表活动 当一个SQL语句第一次到达Oracle内核时数据库对SQL语句进行分析,包含在查询中的数据字典对象被分解,产生SQL执行路径。如果SQL语句指向一个不在SGA中的对象表或视图,Oracle执行SQL语句到数据典中查询有关对象的信息。数据块从数据字典表被读取到SGA的数据缓存中。由于每个数据字典都很小,因此,我们可缓存这些表以提高对这些表的命中率。但是由于数据字典表的数据块在SGA中占据空间,当增加全部的命中率时,它们会降低表数据块的可用空间, 所以若查询所需的时间字典信息已经在SGA缓存中,那么就没有必要递归调用。 2)临时段的活动 当用户执行一个需要排序的查询时,Oracle设法对内存中排序区内的所有行进行排序,排序区的大小由数据库的initora文件的数确定。如果排序区域不够大,数据库就会在排序 *** 作期间开辟临时段。临时段会人为地降低OLTP(online transaction processing)应用命中率,也会降低查询进行排序的性能。如果能在内存中完成全部排序 *** 作,就可以消除向临时段写数据的开销。所以应将SORT_AREA_SIZE设置得足够大,以避免对临时段的需要。这个参数的具体调整方法是:查询相关数据,以确定这个参数的调整。 select from v$sysstat where name='sorts(disk)'or name='sorts(memory); 大部分排序是在内存中进行的,但还有小部分发生在临时段, 需要调整 值,查看initora文件的 SORT_AREA_SIZE值,参数为:SORT_AREA_SIZE=65536;将其调整到SORT_AREA_SIZE=131072、这个值调整后,重启ORACLE数据库即可生效。 3)回滚段的活动 回滚段活动分为回滚活动和回滚段头活动。对回滚段头块的访问会降低应用的命中率, 对OLTP系统命中率的影响最大。为确认是否因为回滚段影响了命中率,可以查看监控输出报表中的“数据块相容性读一重写记录应用” 的统计值,这些统计值是用来确定用户从回滚段中访问数据的发生次数。 4)表扫描 通过大扫描读得的块在数据块缓存中不会保持很长时间, 因此表扫描会降低命中率。为了避免不必要的全表扫描,首先是根据需要建立索引,合理的索引设计要建立人对各种查询的分析和预测上,笔者会在SQL优化中详细谈及;其次是将经常用到的表放在内存中,以降低磁盘读写次数。
如何优化数据库提高数据库的效率1 SQL优化的原则是:将一次 *** 作需要读取的BLOCK数减到最低,即在最短的时间达到最大的数据吞吐量。
调整不良SQL通常可以从以下几点切入:
检查不良的SQL,考虑其写法是否还有可优化内容
检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写
检查优化索引的使用
考虑数据库的优化器
2 避免出现SELECT FROM table 语句,要明确查出的字段。
3 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。
4 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。
5 在判断有无符合条件的记录时建议不要用SELECT COUNT ()和select 1 语句。
6 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。
7 应绝对避免在order by子句中使用表达式。
8 如果需要从关联表读数据,关联的表一般不要超过7个。
9 小心使用 IN 和 OR,需要注意In集合中的数据量。建议集合中的数据不超过200个。
10 <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。
11 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。
12 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含第一列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。
13 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。
注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。
14 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customercustomer_id=ordercustomer_id where ordermoney>100。
15 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。
16 如果在语句中有not in(in) *** 作,应考虑用not exists(exists)来重写,最好的办法是使用外连接实现。
17 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读 *** 作在前面完成,数据库写 *** 作在后面完成,避免交叉。
18 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。
19 用union all 代替 union,数据库执行union *** 作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。
当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。
数据更新的效率
1 在一个事物中,对同一个表的多个insert语句应该集中在一起执行。
2 在一个业务过程中,尽量的使insert,update,delete语句在业务结束前执行,以减少死锁的可能性。
数据库物理规划的效率
为了避免I/O的冲突,我们在设计数据库物理规划时应该遵循几条基本的原则(以ORACLE举例):
table和index分离:table和index应该分别放在不同的tablespace中。
Rollback Segment的分离:Rollback Segment应该放在独立的Tablespace中。
System Tablespace的分离:System Tablespace中不允许放置任何用户的object。(mssql中primary filegroup中不允许放置任何用户的object)
Temp Tablesace的分离:建立单独的Temp Tablespace,并为每个user指定default Temp Tablespace
避免碎片:但segment中出现大量的碎片时,会导致读数据时需要访问的block数量的增加。对经常发生DML *** 作的segemeng来说,碎片是不能完全避免的。所以,我们应该将经常做DML *** 作的表和很少发生变化的表分离在不同的Tablespace中。
当我们遵循了以上原则后,仍然发现有I/O冲突存在,我们可以用数据分离的方法来解决。
连接Table的分离:在实际应用中经常做连接查询的Table,可以将其分离在不同的Taclespace中,以减少I/O冲突。
使用分区:对数据量很大的Table和Index使用分区,放在不同的Tablespace中。
在实际的物理存储中,建议使用RAID。日志文件应放在单独的磁盘中。
数据库的查询优化算法给出你的查询,然后才可以对其进行优化
如何优化SQL Server数据库查询如果你的查询比较固定,并且查询的条件区别度较高,可以建立相应的索引。
其他的一些规则,比如使用exists代替 in都可以试试
查询速度慢的原因很多,常见如下几种:
1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
可以通过如下方法来优化查询 :
1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要
2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)
3、升级硬件
4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段
5、提高网速;
6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 15 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 15 倍(虚拟内存大小设置的一半)。
7、增加服务器 CPU个数; 但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新 *** 作Update,Insert, Delete还不能并行处理。
8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
9、DB Server 和APPLication Server 分离;OLTP和OLAP分离
10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')
a、在实现分区视图之前,必须先水平分区表
b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统 *** 作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE 设置自动收缩日志对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:
1、 查询语句的词法、语法检查
2、 将语句提交给DBMS的查询优化器
3、 优化器做代数优化和存取路径的优化
4、 由预编译模块生成查询规划
5、 然后在合适的时间提交给系统处理执行
6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。
12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) mit trans 或者将动态SQL 写成函数或者存储过程。
13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。
14、SQL的注释申明对执行没有任何影响
15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取 *** 作,也是默认方式。可滚动性可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 Select 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚 *** 作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 Select 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定更新其它 未锁定 未锁定 未锁定 更新 指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。
16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在; 用索引优化器优化索引
17、注意UNion和UNion all 的区别。UNION all好
18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的
19、查询时不要返回不需要的行、列
20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET LOCKTIME设置锁的时间
21、用select 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制 *** 作的行
22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因为他们不走索引全是表扫描。也不要在Where字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代还可以变通写法:Where SUBSTRING(firstname,1,1) = 'm'改为Where firstname like 'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT *** 作如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS NULL,"NOT", "NOT EXISTS", "NOT IN"能优化她,而"<>"等还是不能优化,用不到索引。
23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。
24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: Select FROM PersonMember (INDEX = IX_Title) Where processid IN ('男','女')
25、将需要查询的结果预先计算好放在表中,查询的时候再Select。这在SQL70以前是最重要的手段。例如医院的住院费计算。
26、MIN() 和 MAX()能使用到合适的索引。
27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure这样不仅维护工作小,编写程序质量高,并且执行的速度快。
28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌Insert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值存储过程就没有这些动作: 方法:Create procedure p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善
处理大量数据并发 *** 作可以采用如下几种方法:
1使用缓存:使用程序直接保存到内存中。或者使用缓存框架: 用一个特定的类型值来保存,以区别空数据和未缓存的两种状态。
2数据库优化:表结构优化;SQL语句优化,语法优化和处理逻辑优化;分区;分表;索引优化;使用存储过程代替直接 *** 作。
3分离活跃数据:可以分为活跃用户和不活跃用户。
4批量读取和延迟修改: 高并发情况可以将多个查询请求合并到一个。高并发且频繁修改的可以暂存缓存中。
5读写分离: 数据库服务器配置多个,配置主从数据库。写用主数据库,读用从数据库。
6分布式数据库: 将不同的表存放到不同的数据库中,然后再放到不同的服务器中。
7NoSql和Hadoop: NoSql,not only SQL。没有关系型数据库那么多限制,比较灵活高效。Hadoop,将一个表中的数据分层多块,保存到多个节点(分布式)。每一块数据都有多个节点保存(集群)。集群可以并行处理相同的数据,还可以保证数据的完整性。
:
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
参考资料:网页链接
你好,很荣幸为你解答。
ECIF系统属于分析型客户关系管理(CRM)系统,其核心功能包括:客户单一视图展现、经营分析和辅助决策分析、数据挖掘和预测。
随着银行业全面对外开放,银行之间全方位的竞争,不但体现在金融产品的创新上,还体现在内部的经营管理上。其基础和实质都是如何做到“以客户为中心”,更好地为客户服务。因此要求各银行最大限度地整合和挖掘客户信息,从深度和广度两方面分析,进而为银行战略方针的制定提供数据支持。企业级客户单一视图系统(ECIF)应用而生,下面以某银行ECIF系统的建设为例,分析ECIF系统的主要功能和技术实现要点。
一、ECIF的主要功能
ECIF一般采用T+1的方式整合不同系统,展现客户信息全貌,属于银行后台的管理应用。系统主要功能如图1所示。
1整合客户信息的范围
ECIF系统主要业务功能是整合客户的各类信息,并对部分信息进行分析加工。从客户视角出发,客户信息涵盖客户的基本信息、账户信息、签约信息、客户关系信息、以及客户在银行的利润贡献。
客户基本信息:ECIF集中存放并展现全行客户的基本信息,包括个人客户、企业客户、金融机构客户以及客户群的虚拟客户。涵盖了客户的通用、财务、风险及特征等信息。
客户账户信息:账户信息指客户在银行的所有账户情况,可能分散在各应用产品中。ECIF抽取、转换和整合(ETL)的过程需要对原系统的账户信息按照一定维度进行加工。前端可以分层展现,也可以利用报表工具用文字或图表等方式展现客户某类产品的历史余额变化。
客户关系信息:集团客户各成员之间的关系一直是银行经营层和管理层关注的重点。ECIF系统需要强大的追溯功能,支持以图表、文字等方式展现某一集团客户成员之间的关系概览,如存在的控股关系、母子公司关系。
客户签约产品信息:客户签约产品信息的内容主要包括客户额度合约、贷款合约、抵质押合约、保证合约、客户签约产品列表等。
分析信息:按照一定的业务分析模型分析客户对银行的利润贡献度,如内部资金价格转移、成本分摊计算客户对银行利息收入、利息支出、中间业务净收入、净利润等指标。
2客户信息的挖掘
通过信息整合,ECIF系统可通过商务智能工具对客户信息进行多种维度、多种层次的数据分析,包括向下钻取、数据切片和旋转以及交互式的图形分析能力,使用户可从任意角度观察和研究客户信息,并支持创建完美的即席报表。而且支持用户从数据库中精心筛选“黄金”数据创建成多维数据立方体。立方体按视察业务的多维因素分析模型(OLAP)设计创建,用户可辨明趋势、跟踪业务运作、创建高效的统计汇总报表。
在客户信息整合的基础上,利用挖掘工具对客户进行VIP筛选。从大量客户信息中细分出普通客户、普通VIP客户、黄金VIP客户等,并为VIP客户提供差异化服务。
二、ECIF系统应用架构
ECIF系统在采用OFSA套件的金融数据模型(OFDM)基础上实现。如图2所示,系统采用多层、可扩展框架结构,整体包括数据导入(ETL)、数据管理和数据存取层三大部分。
1数据导入
主要采用ETL工具,通过数据抽取、转换、并最后加载到OFSA基础数据库OFDM。具体分为如下几个区域。
文件预处理:接收数据下传平台数据,并完成诸如数据文件校验、拆分等相关预处理工作。
临时区域:加载数据的临时存储,并完成ETL工作中的各种复杂计算和转换工作。例如各种账户和数据的平均余额计算、VIP客户识别等工作。
OFDM区域:OFDM为ECIF数据存储模型存储区,为满足银行的各种分析和展现需求提供数据基础。
为满足ETL大批量数据处理的高性能、高吞吐量需求,整个ETL流程贯穿了大批量、并行处理的思路。利用了数据库中的并行处理技术、外部表技术、合并语句批量、并行更新技术、多表插入技术、直接插入技术、批量并行加载技术、分区交换技术、表空间迁移等技术。
非分区表的并行处理:非分区表在执行并行查询语句时,根据该表的并行度(DOP)定义或者根据语句的并行处理提示(/+PARALLEL()/),自动从并行处理缓冲池中分配相应数量的并行进程进行并行 *** 作,并行处理协调器自动将各并行子进程处理的结果合并返回给客户,并释放并行子进程返回到缓冲池中。
分区级的并行处理:在对分区表进行处理时,自动为每个分区分配一个进程,达到并行处理的目的。分区之间可并行处理,自动根据资源使用情况和数据分布情况,自动在分区内部进行并行处理,提高大批量数据处理的吞吐量。
应用机群(RAC)节点间的并行处理:在RAC结构中,不仅单节点内可充分利用SMP服务器的多CPU、大内存的处理能力进行并行处理,而且当单节点不能满足处理需求时,RAC通过INSTANCE_GROUPS、PARALLEL_INSTANCE_GROUP等参数的设置,可将大作业分配到多个节点进行并行处理,充分利用硬件资源,提高大数据量处理的速度和吞吐量。
2数据管理
OFDM数据库模型涉及的数据表主要有以下6类。
OFSA总账表:OFSA总账表用于保存金融数据汇总信息、统计信息、历史信息、和某一时间点的信息。OFSA系统中只有惟一的LEDGER_STAT表。表中的每一行均可找到期末、平均余额和统计要素。但外围系统数据导入此表时必需先导入一张接口表,再通过API由接口表导入总账表。
金融工具表:OFDM中存在多个金融工具表,用于记录金融产品账户级信息,包括存款、借款、xyk等。
交易信息表:存放基础数据表的细节交易数据,如存贷款的明细交易层数据、中间业务的交易数据。
客户信息表:主要用于对客户关系的分析应用,能够提供各类客户关系及盈利能力分析报告。
OFDM基础数据表:OFDM基础数据表是用于存放OFSA系统的参数表,如利率曲线表、汇率曲线表、树结构定义等。
码表:支持上述各表的标准化代码表,如客户经理码表、行业码表等。
3数据存取
基于商业智能工具所提供的强大展示能力,ECIF可以集中存放并展示全行各类客户的信息。通过ECIF系统,用户可查看客户的信息全貌,包括其历史信息。对于未保留历史的客户基本信息用特殊颜色或特殊字体标示,查询结果数据都可以用饼状图、曲线图、趋势图等图表形式灵活展现。
ECIF系统属于分析型客户关系管理(CRM)系统,其核心功能包括:客户单一视图展现、经营分析和辅助决策分析、数据挖掘和预测。银行实施分析型CRM项目建设,关键在于掌握客户信息,只有具备完整的客户信息,才能全面启动客户关系管理工作。
扩展阅读:保险怎么买,哪个好,手把手教你避开保险的这些"坑"
Dryad:MapReduce之外的新思路 目前各大软件巨头都搭建了自己的分布式平台解决方案,主要包括Dryad,DynamoSDMapReduce等框架。2010年12月21日,微软发布了Dryad的测试版本,成为谷歌MapReduce分布式并行计算平台的竞争对手。Dryad是微软构建云计算基础设施的重要核心技术之一,它可以让开发人员在Windows或者,NET平台上编写大规模的并行应用程序模型,并能够让在单机上编写的程序运行在分布式并行计算平台上。工程师可以利用数据中心的服务器集群对数据进行并行处理,当工程师在 *** 作数千台计算机时,无需关心分布式并行计算系统方面的细节。
DryadgDDryadLINO是微软硅谷研究院创建的研究项目,主要用来提供一个分布式并行计算平台。DryadLINO是分布式计算语言,能够将LINQ编写的程序转变为能够在Dryad上运行的程序,使普通程序员也可以轻易进行大规模的分布式计算。它结合了微软Dryad和LINO两种关键技术,被用于在该平台上构建应用。Dryad构建在Cluster Service(集群服务)和分布式文件系统之上,可以处理任务的创建和管理、资源管理,任务监控和可视化、容错,重新执行和调度等工作。
Dryad同MapReduce样,它不仅仅是种编程模型,同时也是一种高效的任务调度模型。Dryad这种编程模型不仅适用于云计算,在多核和多处理器以及异构机群上同样有良好的性能。在VisualStudio 2010 C++有一套并行计算编程框架,支持常用的协同任务调度和硬件资源(例如CPU和内存等)管理,通过WorkStealing算法可以充分利用细颗粒度并行的优势,来保证空闲的线程依照一定的策略建模,从所有线程队列中“偷取”任务执行,所以能够让任务和数据粒度并行。Dryad与上述并行框架相似,同样可以对计算机和它们的CPU进行调度,不同的是Dryad被设计为伸缩于各种规模的集群计算平台,无论是单台多核计算机还是由多台计算机组成的集群,甚至拥有数千台计算机的数据中心,都能以从任务队列中创建的策略建模来实现分布式并行计算的编程框架。
Dryad系统架构
Dryad系统主要用来构建支持有向无环图(Directed Acycline Graph,DAG)类型数据流的并行程序,然后根据程序的要求进行任务调度,自动完成任务在各个节点上的运行。在Dryad平台上,每个任务或并行计算过程都可以被表示为一个有向无环图,图中的每个节点表示一个要执行的程序,节点之间的边表示数据通道中数据的传输方式,其可能是文件、TCPPipe、共享内存
用Dryad平台时,首先需要在任务管理(JM)节点上建立自己的任务,每一个任务由一些处理过程以及在这些处理过程问的数据传递组成。任务管理器(JM)获取无环图之后,便会在程序的输入通道准备,当有可用机器的时候便对它进行调度。JM从命名服务器(NS)那里获得一个可用的计算机列表,并通过一个维护进程(PD)来调度这个程序。
Dryad的执行过程可以看做是一个二维管道流的处理过程,其中每个节点可以具有多个程序的执行,通过这种算法可以同时处理大规模数据。在每个节点进程(VerticesProcesses)上都有一个处理程序在运行,并且通过数据管道(Channels)的方式在它们之间传送数据。二维的Dryad管道模型定义了一系列的 *** 作,可以用来动态地建立并且改变这个有向无环图。这些 *** 作包括建立新的节点,在节点之间加入边,合并两个图以及对任务的输入和输出进行处理等。
Dryad模型算法应用
DryadLINQ可以根据工程师给出的LINQ查询生成可以在Dryad引擎上执行的分布式策略算法建模(运算规则),并负责任务的自动并行处理及数据传递时所需要的序列化等 *** 作。此外,它还提供了一系列易于使用的高级特性,如强类型数据、Visual Studio集成调试以及丰富的任务优化策略(规则)算法等。这种模型策略开发框架也比较适合采用领域驱动开发设计(DDD)来构建“云”平台应用,并能够较容易地做到自动化分布式计算。
我们经常会遇到网站或系统无法承载大规模用户并发访问的问题,解决该问题的传统方法是使用数据库,通过数据库所提供的访问 *** 作接口来保证处理复杂查询的能力。当访问量增大,单数据库处理不过来时便增加数据库服务器。如果增加了三台服务器,再把用户分成了三类A(学生)、B(老师),C(工程师)。每次访问时先查看用户属于哪一类,然后直接访问存储那类用户数据的数据库,则可将处理能力增加三倍,这时我们已经实现了一个分布式的存储引擎过程。
我们可以通过Dryad分布式平台来解决云存储扩容困难的问题。如果这三台服务器也承载不了更大的数据要求,需要增加到五台服务器,那必须更改分类方法把用户分成五类,然后重新迁移已经存在的数据,这时候就需要非常大的迁移工作,这种方法显然不可取。另外,当群集服务器进行分布式计算时,每个资源节点处理能力可能有所不同(例如采用不同硬件配置的服务器),如果只是简单地把机器直接分布上去,性能高的机器得不到充分利用,性能低的机器处理不过来。
Dryad解决此问题的方法是采用虚节点,把上面的A、B、C三类用户都想象成一个逻辑上的节点。一台真实的物理节点可能会包含一个或者几个虚节点(逻辑节点),看机器的性能而定。我们可以把那任务程序分成Q等份(每一个等份就是一个虚节点),这个Q要远大于我们的资源数。现在假设我们有S个资源,那么每个资源就承担Q/S个等份。当一个资源节点离开系统时,它所负责的等份要重新均分到其他资源节点上;当一个新节点加入时,要从其他的节点1偷取2一定数额的等份。
在这个策略建模算法下,当一个节点离开系统时,虽然需要影响到很多节点,但是迁移的数据总量只是离开那个节点的数据量。同样,~个新节点的加入,迁移的数据总量也只是一个新节点的数据量。之所以有这个效果是因为Q的存在,使得增加和减少节点的时候不需要对已有的数据做重新哈希(D)。这个策略的要求是Q>>s(存储备份上,假设每个数据存储N个备份则要满足Q>>SN)。如果业务快速发展,使得不断地增加主机,从而导致Q不再满足Q>>S,那么这个策略将重新变化。
Dryad算法模型就是一种简化并行计算的编程模型,它向上层用户提供接口,屏蔽了并行计算特别是分布式处理的诸多细节问题,让那些没有多少并行计算经验的开发 人员也可以很方便地开发并行应用,避免了很多重复工作。这也就是Dryad算法模型的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛,并且能大大减轻了工程师在开发大规模数据应用时的负担。
通过上述的论述,我们可以看到Dryad通过一个有向无环图的策略建模算法,提供给用户一个比较清晰的编程框架。在这个编程框架下,用户需要将自己的应用程序表达为有向无环图的形式,节点程序则编写为串行程序的形式,而后用Dryad方法将程序组织起来。用户不需要考虑分布式系统中关于节点的选择,节点与通信的出错处理手段都简单明确,内建在Dryad框架内部,满足了分布式程序的可扩展性、可靠性和对性能的要求。
使用Drvad LINO
通过使用DryadLINQ编程,使工程师编写大型数据并行程序能够轻易地运行在大型计算机集群里。DryadLINO开发的程序是一组顺序的L_NQ代码,它们可以针对数据集做任何无副作用的 *** 作,编译器会自动将其中数据并行的部分翻译成并行执行的计划,并交由底层的Dryad平台完成计算,从而生成每个节点要执行的代码和静态数据,并为所需要传输的数据类型生成序列化代码;
LINQ本身是,NET引入的组编程结构,它用于像 *** 作数据库中的表一样来 *** 作内存中的数据集合。DryadLINQ提供的是一种通用的开发/运行支持,而不包含任何与实际业务,算法相关的逻辑,Dryad和DryadLINQ都提供有API。DryadLINQ使用和LINQ相同的编程模型,并扩展了少量 *** 作符和数据类型以适用于数据并行的分布式计算。并从两方面扩展了以前的计算模型(SQL,MapReduce,Dryad等)它是基于,NET强类型对象的,表达力更强的数据模型和支持通用的命令式和声明式编程(混合编程),从而延续了LINQ代码即数据(treat codeas data)的特性。
DryadLINQ使用动态的代码生成器,将DryadLINQ表达式编译成,NET字节码。这些编译后的字节码会根据调度执行的需要,被传输到执行它的机器上去。字节码中包含两类代码完成某个子表达式计算的代码和完成输入输出序列化的代码。这种表达式并不会被立刻计算,而是等到需要其结果的时候才进行计算。DryadLINQ设计的核心是在分布式执行层采用了一种完全函数式的,声明式的表述,用于表达数据并行计算中的计算。这种设计使得我们可以对计算进行复杂的重写和优化,类似于传统的并行数据库。从而解决了传统分布式数据库SQL语句功能受限与类型系统受限问题,以及MapReduce模型中的计算模型受限和没有系统级的自动优化等问题。
在Dryad编程模式中,应用程序的大规模数据处理被分解为多个步骤,并构成有向无环图形式的任务组织,由执行引擎去执行。这两种模式都提供了简单明了的编程方式,使得工程师能够很好地驾驭云计算处理平台,对大规模数据进行处理。Dryad的编程方式可适应的应用也更加广泛,通过DryadLINQ所提供的高级语言接口,使工程师可以快速进行大规模的分布式计算应用程序的编写。
Dryad技术的应用
云计算最重要的概念之~就是可伸缩性,实现它的关键是虚拟化。通过虚拟化可以在一台共享计算机上聚集多个 *** 作系统和应用程序,以便更好地利用服务器。当一个服务器负载超荷时,可以将其中一个 *** 作系统的一个实例(以及它的应用程序)迁移到一个新的,相对闲置的服务器上。虚拟化(Virtualization)是云计算的基石,企业实现私有云的第一步就是服务器基础架构进行虚拟化。基础设施虚拟化之后。接下来就是要将现有应用迁移到虚拟环境中。
Dryad结合Hyper-V(Windows Server 2008的一个关键组成部分)虚拟化技术。可以实现TB级别数据的在线迁移。中小型企业也可以针对企业内部小型集群服务器进行分布式应用系统编程,以及制定私有云开发与应用解决方案等设计。Windows Azure是微软的公有云解决方案,但是目前要大规模应用还为时过早。使用现有Windows第三方产品实现私有云,花费成本却很大。然而Dryad技术给我们带来了不错的折中选择,当我们基于Windows Server台运行应用系统或者网站时,便可以基于Dryad分布式架构来开发与设计实现。当公有云时机成熟和各种条件完备时,系统可以很轻易地升级到公有云,企业而无需花费太多成本。
写在最后
云计算可以看成是网络计算与虚拟化技术的结合,利用网络的分布式计算能力将各种IT资源筑成一个资源池,然后结合成熟的存储虚拟化和服务虚拟化技术,让用户实时透明地监控和调配资源。Dryad是实现构建微软云计算基础设施的重要核心技术之一,其具有诸多优点,如DryadLINQ具有声明式编程并将 *** 作的对象封装为,NET类数据,方便数据 *** 作,自动并行化、VisualStudio IDE和,NET类库集成,自动序列化和任务图的优化(静态和动态(主要通过DryadAPI实现)),对J0in进行了优化,得到了比BigTable+MapReduee更快的Join速率和更易用的数据 *** 作方式等。
不过,Dryad和DryadLINQ也同样具有局限性。其一,它更适用于批处理任务,而不适用于需要快速响应的任务;这个数据模型更适用于处理流式访问,而不是随机访问。其二,DryadLINQ使用的是,NET的LINO查询语言模型,针对运行Windows HPC Server的计算机集群设计,而目前高性能计算市场被Einux所占领。此外,和MapReduce的应用时间和实践相比,Dryad的可靠性还明显不足,据了解除了微软AdCenter中的数据分析和Trident项目之外,其它应用Dryad的地方还很少。不过总的来看,Dryad平台在将来仍具有很广泛的发展前景,尤其对NET开发人员来说是―次很重要的技术革新机遇。
名词解释
任务管理器(Job Manager,JM):每个Job的执行被一个Job Manager控制,该组件负责实例化这个Job的工作图,在计算机群上调度节点的执行;监控各个节点的执行情况并收集一些信息,通过重新执行来提供容错:根据用户配置的策略动态地调整工作图。
计算机群(Cluster):用于执行工作图中的节点。
命名服务器(Name Server,Ns):负责维护cluster中各个机器的信息。
维护进程(PDaemon,PD):进程监管与调度工作。
以上就是关于基于DB2的数据库应用系统的性能优化全部的内容,包括:基于DB2的数据库应用系统的性能优化、数据库的多表大数据查询应如何优化、如何处理大量数据并发 *** 作等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)