在说HBase之前,我想再唠叨几句。做互联网应用的哥们儿应该都清楚,互联网应用这东西,你没办法预测你的系统什么时候会被多少人访问,你面临的用户到底有多少,说不定今天你的用户还少,明天系统用户就变多了,结果您的系统应付不过来了了,不干了,这岂不是咱哥几个的悲哀,说时髦点就叫“杯具啊”。
其实说白了,这些就是事先没有认清楚互联网应用什么才是最重要的。从系统架构的角度来说,互联网应用更加看重系统性能以及伸缩性,而传统企业级应用都是比较看重数据完整性和数据安全性。那么我们就来说说互联网应用伸缩性这事儿对于伸缩性这事儿,哥们儿我也写了几篇博文,想看的兄弟可以参考我以前的博文,对于web server,app server的伸缩性,我在这里先不说了,因为这部分的伸缩性相对来说比较容易一点,我主要来回顾一些一个慢慢变大的互联网应用如何应对数据库这一层的伸缩。
首先刚开始,人不多,压力也不大,搞一台数据库服务器就搞定了,此时所有的东东都塞进一个Server里,包括web server,app server,db server,但是随着人越来越多,系统压力越来越多,这个时候可能你把web server,app server和db server分离了,好歹这样可以应付一阵子,但是随着用户量的不断增加,你会发现,数据库这哥们不行了,速度老慢了,有时候还会宕掉,所以这个时候,你得给数据库这哥们找几个伴,这个时候Master-Salve就出现了,这个时候有一个Master Server专门负责接收写 *** 作,另外的几个Salve Server专门进行读取,这样Master这哥们终于不抱怨了,总算读写分离了,压力总算轻点了,这个时候其实主要是对读取 *** 作进行了水平扩张,通过增加多个Salve来克服查询时CPU瓶颈。一般这样下来,你的系统可以应付一定的压力,但是随着用户数量的增多,压力的不断增加,你会发现Master server这哥们的写压力还是变的太大,没办法,这个时候怎么办呢?你就得切分啊,俗话说“只有切分了,才会有伸缩性嘛”,所以啊,这个时候只能分库了,这也是我们常说的数据库“垂直切分”,比如将一些不关联的数据存放到不同的库中,分开部署,这样终于可以带走一部分的读取和写入压力了,Master又可以轻松一点了,但是随着数据的不断增多,你的数据库表中的数据又变的非常的大,这样查询效率非常低,这个时候就需要进行“水平分区”了,比如通过将User表中的数据按照10W来划分,这样每张表不会超过10W了。
综上所述,一般一个流行的web站点都会经历一个从单台DB,到主从复制,到垂直分区再到水平分区的痛苦的过程。其实数据库切分这事儿,看起来原理貌似很简单,如果真正做起来,我想凡是sharding过数据库的哥们儿都深受其苦啊。对于数据库伸缩的文章,哥们儿可以看看后面的参考资料介绍。
好了,从上面的那一堆废话中,我们也发现数据库存储水平扩张scale out是多么痛苦的一件事情,不过幸好技术在进步,业界的其它弟兄也在努力,09年这一年出现了非常多的NoSQL数据库,更准确的应该说是No relation数据库,这些数据库多数都会对非结构化的数据提供透明的水平扩张能力,大大减轻了哥们儿设计时候的压力。下面我就拿Hbase这分布式列存储系统来说说。
一 Hbase是个啥东东?
在说Hase是个啥家伙之前,首先我们来看看两个概念,面向行存储和面向列存储。面向行存储,我相信大伙儿应该都清楚,我们熟悉的RDBMS就是此种类型的,面向行存储的数据库主要适合于事务性要求严格场合,或者说面向行存储的存储系统适合OLTP,但是根据CAP理论,传统的RDBMS,为了实现强一致性,通过严格的ACID事务来进行同步,这就造成了系统的可用性和伸缩性方面大大折扣,而目前的很多NoSQL产品,包括Hbase,它们都是一种最终一致性的系统,它们为了高的可用性牺牲了一部分的一致性。好像,我上面说了面向列存储,那么到底什么是面向列存储呢?Hbase,Casandra,Bigtable都属于面向列存储的分布式存储系统。看到这里,如果您不明白Hbase是个啥东东,不要紧,我再总结一下下:
Hbase是一个面向列存储的分布式存储系统,它的优点在于可以实现高性能的并发读写 *** 作,同时Hbase还会对数据进行透明的切分,这样就使得存储本身具有了水平伸缩性。
二 Hbase数据模型
HBase,Cassandra的数据模型非常类似,他们的思想都是来源于Google的Bigtable,因此这三者的数据模型非常类似,唯一不同的就是Cassandra具有Super cloumn family的概念,而Hbase目前我没发现。好了,废话少说,我们来看看Hbase的数据模型到底是个啥东东。
在Hbase里面有以下两个主要的概念,Row key,Column Family,我们首先来看看Column family,Column family中文又名“列族”,Column family是在系统启动之前预先定义好的,每一个Column Family都可以根据“限定符”有多个column下面我们来举个例子就会非常的清晰了。
假如系统中有一个User表,如果按照传统的RDBMS的话,User表中的列是固定的,比如schema 定义了name,age,sex等属性,User的属性是不能动态增加的。但是如果采用列存储系统,比如Hbase,那么我们可以定义User表,然后定义info 列族,User的数据可以分为:info:name = zhangsan,info:age=30,info:sex=male等,如果后来你又想增加另外的属性,这样很方便只需要info:newProperty就可以了。
也许前面的这个例子还不够清晰,我们再举个例子来解释一下,熟悉SNS的朋友,应该都知道有好友Feed,一般设计Feed,我们都是按照“某人在某时做了标题为某某的事情”,但是同时一般我们也会预留一下关键字,比如有时候feed也许需要url,feed需要image属性等,这样来说,feed本身的属性是不确定的,因此如果采用传统的关系数据库将非常麻烦,况且关系数据库会造成一些为null的单元浪费,而列存储就不会出现这个问题,在Hbase里,如果每一个column 单元没有值,那么是占用空间的。下面我们通过两张图来形象的表示这种关系:
上图是传统的RDBMS设计的Feed表,我们可以看出feed有多少列是固定的,不能增加,并且为null的列浪费了空间。但是我们再看看下图,下图为Hbase,Cassandra,Bigtable的数据模型图,从下图可以看出,Feed表的列可以动态的增加,并且为空的列是不存储的,这就大大节约了空间,关键是Feed这东西随着系统的运行,各种各样的Feed会出现,我们事先没办法预测有多少种Feed,那么我们也就没有办法确定Feed表有多少列,因此Hbase,Cassandra,Bigtable的基于列存储的数据模型就非常适合此场景。说到这里,采用Hbase的这种方式,还有一个非常重要的好处就是Feed会自动切分,当Feed表中的数据超过某一个阀值以后,Hbase会自动为我们切分数据,这样的话,查询就具有了伸缩性,而再加上Hbase的弱事务性的特性,对Hbase的写入 *** 作也将变得非常快。
上面说了Column family,那么我之前说的Row key是啥东东,其实你可以理解row key为RDBMS中的某一个行的主键,但是因为Hbase不支持条件查询以及Order by等查询,因此Row key的设计就要根据你系统的查询需求来设计了额。我还拿刚才那个Feed的列子来说,我们一般是查询某个人最新的一些Feed,因此我们Feed的Row key可以有以下三个部分构成<userId><timestamp><feedId>,这样以来当我们要查询某个人的最进的Feed就可以指定Start Rowkey为<userId><0><0>,End Rowkey为<userId><LongMAX_VALUE><LongMAX_VALUE>来查询了,同时因为Hbase中的记录是按照rowkey来排序的,这样就使得查询变得非常快。
三 Hbase的优缺点
1 列的可以动态增加,并且列为空就不存储数据,节省存储空间
2 Hbase自动切分数据,使得数据存储自动具有水平scalability
3 Hbase可以提供高并发读写 *** 作的支持
Hbase的缺点:
1 不能支持条件查询,只支持按照Row key来查询
2 暂时不能支持Master server的故障切换,当Master宕机后,整个存储系统就会挂掉
四补充
1数据类型,HBase只有简单的字符类型,所有的类型都是交由用户自己处理,它只保存字符串。而关系数据库有丰富的类型和存储方式。
2数据 *** 作:HBase只有很简单的插入、查询、删除、清空等 *** 作,表和表之间是分离的,没有复杂的表和表之间的关系,而传统数据库通常有各式各样的函数和连接 *** 作。
3存储模式:HBase是基于列存储的,每个列族都由几个文件保存,不同的列族的文件时分离的。而传统的关系型数据库是基于表格结构和行模式保存的
4数据维护,HBase的更新 *** 作不应该叫更新,它实际上是插入了新的数据,而传统数据库是替换修改
5可伸缩性,Hbase这类分布式数据库就是为了这个目的而开发出来的,所以它能够轻松增加或减少硬件的数量,并且对错误的兼容性比较高。而传统数据库通常需要增加中间层才能实现类似的功能
最近对离线数仓体系进行了扩容和架构改造,也算是一波三折,出了很多小插曲,有一些改进点对我们来说也是真空地带,通过对比和模拟压测总算是得到了预期的结果,这方面尤其值得一提的是郭运凯同学的敬业,很多前置的工作,优化和应用压测的工作都是他完成的。
整体来说,整个事情的背景是因为服务器硬件过保,刚好借着过保服务器替换的机会来做集群架构的优化和改造。
1集群架构改造的目标
在之前也总结过目前存在的一些潜在问题,也是本次部署架构改进的目标:
1)之前 的GP segment数量设计过度 ,因为资源限制,过多考虑了功能和性能,对于集群的稳定性和资源平衡性考虑有所欠缺,在每个物理机节点上部署了10个Primary,10个Mirror,一旦1个服务器节点不可用,整个集群几乎无法支撑业务。
2)GP集群 的存储资源和性能的平衡不够 ,GP存储基于RAID-5,如果出现坏盘,磁盘重构的代价比较高,而且重构期间如果再出现坏盘,就会非常被动,而且对于离线数仓的数据质量要求较高,存储容量相对不是很大,所以在存储容量和性能的综合之上,我们选择了RAID-10。
3)集 群的异常场景的恢复需要完善, 集群在异常情况下(如服务器异常宕机,数据节点不可用,服务器后续过保实现节点滚动替换)的故障恢复场景测试不够充分,导致在一些迁移和改造中,相对底气不足,存在一些知识盲区。
4)集群版本过 低 ,功能和性能上存在改进空间。毕竟这个集群是4年前的版本,底层的PG节点的版本也比较旧了,在功能上和性能上都有一定的期望,至少能够与时俱进。
5) *** 作系统版本升 级 ,之前的 *** 作系统是基于CentOS6,至少需要适配CentOS 7 。
6)集群TPCH 压测验收 ,集群在完成部署之后,需要做一次整体的TPCH压测验收,如果存在明显的问题需要不断调整配置和架构,使得达到预期的性能目标。
此外在应用层面也有一些考虑,总而言之,是希望能够解决绝大多数的痛点问题,无论是在系统层面,还是应用层面,都能上一个台阶。
2集群规划设计的选型和思考
明确了目标,就是拆分任务来规划设计了,在规划设计方面主要有如下的几个问题:
1)Greenplum的版本选择 ,目前有两个主要的版本类别,一个是开源版(Open Source distribution)和Pivotal官方版,它们的其中一个差异就是官方版需要注册,签署协议,在此基础上还有GPCC等工具可以用,而开源版本可以实现源码编译或者rpm安装,无法配置GPCC。综合来看,我们选择了 开源版本的6162 ,这其中也询问了一些行业朋友,特意选择了几个涉及稳定性bug修复的版本。
2)数据集市的技术选型 ,在数据集市的技术选型方面起初我是比较坚持基于PostgreSQL的模式,而业务侧是希望对于一些较为复杂的逻辑能够通过GP去支撑,一来二去之后,加上我咨询了一些行业朋友的意见,是可以选择基于GP的方案,于是我们就抱着试一试的方式做了压测,所以数据仓库和和数据集市会是两个不同规模体量的GP集群来支撑。
3)GP的容量规划 ,因为之前的节点设计有些过度,所以在数量上我们做了缩减,每台服务器部署12个segment节点,比如一共12台服务器,其中有10台服务器是Segment节点,每台上面部署了6个Primary,6个Mirror,另外2台部署了Master和Standby,就是即(6+6)10+2,整体的配置情况类似下面的模式。
4)部署架构方案选型 ,部署架构想起来比较容易,但是落实起来有很多的考虑细节,起初考虑GP的Master和Standby节点如果混用还是能够节省一些资源,所以设计的数据仓库和数据集市的部署架构是这样考虑的,但是从走入部署阶段之后,很快就发现这种交叉部署的模式是不可行的,或者说有一些复杂度。
除此之外,在单个GP集群的部署架构层面,还有4类方案考虑。
方案1 :Master,Standby和segment混合部署
方案2 :Master,Standby和segment独立部署,整个集群的节点数会少一些
方案3 :Segment独立部署,Master,Standby虚拟机部署
方案4 :最小化单节点集群部署(这是数据集市最保底的方案)
这方面存在较大的发挥空间,而且总体来说这种验证磨合的成本也相对比较高,实践给我上了一课, 越是想走捷径,越是会让你走一些弯路 ,而且有些时候的优化其实我也不知道改怎么往下走,感觉已经无路可走,所以上面这4种方案其实我们都做了相关的测试和验证。
3集群架构的详细设计和实践
1)设计详细的部署架构图
在整体规划之上,我设计了如下的部署架构图,每个服务器节点有6个Primary,6个Mirror,服务器两两映射。
2)内核参数优化
按照官方文档的建议和具体的配置情况,我们对内核参数做了如下的配置:
vmswappiness=10
vmzone_reclaim_mode = 0
vmdirty_expire_centisecs = 500
vmdirty_writeback_centisecs = 100
vmdirty_background_ratio = 0 # See System Memory
vmdirty_ratio = 0
vmdirty_background_bytes = 1610612736
vmdirty_bytes = 4294967296
vmmin_free_kbytes = 3943084
vmovercommit_memory=2
kernelsem = 500 2048000 200 4096
4集群部署步骤
1)首先是配置/etc/hosts,需要把所有节点的IP和主机名都整理出来。
2)配置用户,很常规的步骤
groupadd gpadmin
useradd gpadmin -g gpadmin
passwd gpadmin
3)配置sysctlconf和资源配置
4)使用rpm模式安装
# yum install -y apr apr-util bzip2 krb5-devel zip
# rpm -ivh open-source-greenplum-db-6162-rhel7-x86_64rpm
5)配置两个host文件,也是为了后面进行统一部署方便,在此建议先开启gpadmin的sudo权限,可以通过gpssh处理一些较为复杂的批量 *** 作
6)通过gpssh-exkeys来打通ssh信任关系,这里需要吐槽这个ssh互信,端口还得是22,否则处理起来很麻烦,需要修改/etc/ssh/sshd_config文件
gpssh-exkeys -f hostlist
7)较为复杂的一步是打包master的Greenplum-db-6162软件,然后分发到各个segment机器中,整个过程涉及文件打包,批量传输和配置,可以借助gpscp和gpssh,比如gpscp传输文件,如下的命令会传输到/tmp目录下
gpscp -f /usr/local/greenplum-db/conf/hostlist /tmp/greenplum-db-6162targz =:/tmp
或者说在每台服务器上面直接rpm -ivh安装也可以。
8)Master节点需要单独配置相关的目录,而Segment节点的目录可以提前规划好,比如我们把Primary和Mirror放在不同的分区。
mkdir -p /data1/gpdata/gpdatap1
mkdir -p /data1/gpdata/gpdatap2
mkdir -p /data2/gpdata/gpdatam1
mkdir -p /data2/gpdata/gpdatam2
9)整个过程里最关键的就是gpinitsystem_config配置了,因为Segment节点的ID配置和命名,端口区间都是根据一定的规则来动态生成的,所以对于目录的配置需要额外注意。
10)部署GP集群最关键的命令是
gpinitsystem -c gpinitsystem_config -s standby_hostname
其中文件gpinitsystem_config的主要内容如下:
MASTER_HOSTNAME=xxxx
declare -a DATA_DIRECTORY=(/data1/gpdata/gpdatap1 /data1/gpdata/gpdatap2 /data1/gpdata/gpdatap3 /data1/gpdata/gpdatap4 /data1/gpdata/gpdatap5 /data1/gpdata/gpdatap6)
TRUSTED_SHELL=ssh
declare -a MIRROR_DATA_DIRECTORY=(/data2/gpdata/gpdatam1 /data2/gpdata/gpdatam2 /data2/gpdata/gpdatam3 /data2/gpdata/gpdatam4 /data2/gpdata/gpdatam5 /data2/gpdata/gpdatam6)
MACHINE_LIST_FILE=/usr/local/greenplum-db/conf/seg_hosts
整个过程大约5分钟~10分钟以内会完成,在部署过程中建议要查看后端的日志查看是否有异常,异常情况下的体验不是很好,可能会白等。
5集群部署问题梳理
集群部署中还是有很多细节的问题,太基础的就不提了,基本上就是配置,目录权限等问题,我提另外几个:
1) 资源配置问题 ,如果/etc/security/limitsconf的资源配置不足会在安装时有如下的警告:
2) 网络问题 ,集群部署完成后可以正常 *** 作,但是在查询数据的时候会抛出错误,比如SQL是这样的,看起来很简单:select count() from customer,但是会抛出如下的错误:
这个问题的主要原因还是和防火墙配置相关,其实不光需要配置INPUT的权限,还需要配置OUTPUT的权限。
对于数据节点可以开放略大的权限,如:
入口的配置:
-A INPUT -p all -s xxxxx -j ACCEPT
出口的配置:
-A OUTPUT -p all -s xxxxx -j ACCEPT
3)网络配置问题 ,这个问题比较诡异的是,报错和上面是一样的,但是在排除了防火墙配置后,select count() from customer;这样的语句是可以执行的,但是执行的等待时间较长,比如表lineitem这表比较大,过亿的数据量,,在10个物理节点时,查询响应时间是10秒,但是4个物理节点,查询响应时间是在90秒,总体删感觉说不过去。
为了排查网络问题,使用gpcheckperf等工具也做过测试,4节点和10节点的基础配置也是相同的。
gpcheckperf -f /usr/local/greenplum-db/conf/seg_hosts -r N -d /tmp
$ cat /etc/hosts
127001 localhost localhostlocaldomain localhost4 localhost4localdomain4
::1 localhost localhostlocaldomain localhost6 localhost6localdomain6
#127001 test-dbs-gp-128-230
xxxxx128238 test-dbs-gp-svr-128-238
xxxxx128239 test-dbs-gp-svr-128-239
其中127001的这个配置在segment和Master,Standby混部的情况是存在问题的,修正后就没问题了,这个关键的问题也是郭运凯同学发现的。
5集群故障恢复的测试
集群的故障测试是本次架构设计中的重点内容,所以这一块也是跃跃欲试。
整体上我们包含两个场景,服务器宕机修复后的集群恢复和服务器不可用时的恢复方式。
第一种场景相对比较简单,就是让Segment节点重新加入集群,并且在集群层面将Primary和Mirror的角色互换,而第二种场景相对时间较长一些,主要原因是需要重构数据节点,这个代价基本就就是PG层面的数据恢复了,为了整个测试和恢复能够完整模拟,我们采用了类似的恢复方式,比如宕机修复使用了服务器重启来替代,而服务器不可用则使用了清理数据目录,类似于一台新配置机器的模式。
1)服务器宕机修复后集群恢复
select from gp_segment_configuration where status!='u';
gprecoverseg -o /recov
gprecoverseg -r
select from gp_segment_configuration where status='u'
2)服务器不可用时集群恢复
重构数据节点的过程中,总体来看网络带宽还是使用很充分的。
select from gp_segment_configuration where status='u'
select from gp_segment_configuration where status='u' and role!=preferred_role;
gprecoverseg -r
select from gp_segment_configuration where status='u' and role!=preferred_role;
经过测试,重启节点到数据修复,近50G数据耗时3分钟左右
6集群优化问题梳理
1)部署架构优化和迭代
对于优化问题,是本次测试中尤其关注,而且争议较多的部分。
首先在做完初步选型后,数仓体系的部署相对是比较顺利的,采用的是第一套方案。
数据集市的集群部分因为节点相对较少,所以就选用了第二套方案
实际测试的过程,因为配置问题导致TPCH的结果没有达到预期。
所以这个阶段也产生了一些疑问和怀疑,一种就是折回第一种方案,但是节点数会少很多,要不就是第三种采用虚拟机的模式部署,最保底的方案则是单节点部署,当然这是最牵强的方案。
这个阶段确实很难,而在上面提到的修复了配置之后,集群好像突然开悟了一般,性能表现不错,很快就完成了100G和1T数据量的TPCH测试。
在后续的改造中,我们也尝试了第三套方案,基于虚拟机的模式,通过测试发现,远没有我们预期的那么理想,在同样的数据节点下,Master和Standby采用物理机和虚拟机,性能差异非常大,这个是出乎我们预料的。比如同样的SQL,方案3执行需要2秒,而方案2则需要80秒,这个差异我们对比了很多指标,最后我个人理解差异还是在网卡部分。
所以经过对比后,还是选择了方案2的混合部署模式。
2)SQL性能优化的分析
此外整个过程的TPCH也为集群的性能表现提供了参考。比如方案2的混合部署模式下,有一条SQL需要18秒,但是相比同类型的集群,可能就只需要2秒钟左右,这块显然是存在问题的。
在排除了系统配置,硬件配置的差异之后,经典的解决办法还是查看执行计划。
性能较差的SQL执行计划:
# explain analyze select count()from customer;
QUERY PLAN
Aggregate (cost=00043100 rows=1 width=8) (actual time=2479291624792916 rows=1 loops=1)
-> Gather Motion 36:1 (slice1; segments: 36) (cost=00043100 rows=1 width=1) (actual time=325516489394 rows=150000000 loops=1)
-> Seq Scan on customer (cost=00043100 rows=1 width=1) (actual time=07801267878 rows=4172607 loops=1)
Planning time: 4466 ms
(slice0) Executor memory: 680K bytes
(slice1) Executor memory: 218K bytes avg x 36 workers, 218K bytes max (seg0)
Memory used: 2457600kB
Optimizer: Pivotal Optimizer (GPORCA)
Execution time: 24832611 ms
(9 rows)
Time: 24892500 ms
性能较好的SQL执行计划:
# explain analyze select count()from customer;
QUERY PLAN
Aggregate (cost=00084208 rows=1 width=8) (actual time=15193111519311 rows=1 loops=1)
-> Gather Motion 36:1 (slice1; segments: 36) (cost=00084208 rows=1 width=8) (actual time=6347871519214 rows=36 loops=1)
-> Aggregate (cost=00084208 rows=1 width=8) (actual time=14732961473296 rows=1 loops=1)
-> Seq Scan on customer (cost=00083433 rows=4166667 width=1) (actual time=0758438319 rows=4172607 loops=1)
Planning time: 5033 ms
(slice0) Executor memory: 176K bytes
(slice1) Executor memory: 234K bytes avg x 36 workers, 234K bytes max (seg0)
Memory used: 2457600kB
Optimizer: Pivotal Optimizer (GPORCA)
Execution time: 1543611 ms
(10 rows)
Time: 1549324 ms
很明显执行计划是被误导了,而误导的因素则是基于统计信息,这个问题的修复很简单:
analyze customer;
但是深究原因,则是在压测时,先是使用了100G压测,压测完之后保留了原来的表结构,直接导入了1T的数据量,导致执行计划这块没有更新。
3)集群配置优化
此外也做了一些集群配置层面的优化,比如对缓存做了调整。
gpconfig -c statement_mem -m 2457600 -v 2457600
gpconfig -c gp_vmem_protect_limit -m 32000 -v 32000
7集群优化数据
最后来感受下集群的性能:
1)10个物理节点,(6+6)10+2
tpch_1t=# iming on
Timing is on
tpch_1t=# select count()from customer;
count
-----------
150000000
(1 row)
Time: 1235801 ms
tpch_1t=# select count()from lineitem;
count
------------
5999989709
(1 row)
Time: 10661756 ms
2)6个物理节点,(6+6)6
# select count()from customer;
count
-----------
150000000
(1 row)
Time: 1346833 ms
# select count()from lineitem;
count
------------
5999989709
(1 row)
Time: 18145092 ms
3)4个物理节点,(6+6)4
# select count()from customer;
count
-----------
150000000
(1 row)
Time: 1531621 ms
# select count()from lineitem;
count
------------
5999989709
(1 row)
Time: 25072501 ms
4)TPCH在不通架构模式下的性能比对 ,有19个查询模型,有个别SQL逻辑过于复杂暂时忽略,也是郭运凯同学整理的列表。
在1T基准下的基准测试表现:
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。
广义的Hadoop,一般称为Hadoop生态系统,如下所示。
Hadoop生态系统中这些软件的作用:
HDFS 采用了主从(Master/Slave)结构模型,一个HDFS集群包括一个名称节点(NameNode)和若干个数据节点(DataNode)。
HDFS采用Java语言开发,因此任何支持JVM的机器都可以部署名称节点和数据节点。
在配置好Hadoop 集群之后,可以通过浏览器访问 >
应根据以下因素或更多因素综合考虑主数据:
企业绩效管理报告(如利润或收入计划随产品、客户、账户等产生的变化)要求综合多个系统的主数据。遵从报告要求一致性主数据。
同步交易系统处理特定客户(如提供具体报价)或供应商(如指定采购的首选供应商)。
主数据管理(MDM)的成熟度
根据主数据管理实施的复杂程度,参照Jill Dyche, Evan Levy的观点大体可以把主数据管理可以分为六个层次,从低到高反映了主数据管理(MDM)的不同成熟度。下面我们简单介绍一下这六个层次:
Level 0 :没有实施任何主数据管理(MDM)
在Level 0的情况下,意味着企业的各个应用之间没有任何的数据共享,整个企业没有数据定义元素存在。比如,一个公司销售很多产品,对这些产品的生产和销售由多个独立的系统来处理,各个系统独立处理产品数据并拥有自己独立的产品列表,各个系统之间不共享产品数据。在Level 0, 每个独立的应用负责管理和维护自己的关键数据(比如产品列表、客户信息等),各个系统间不共享这些信息,这些数据是不连通的。
Level 1 :提供列表
不管公司大还是小,列表管理是我们常用的一种方式。在公司内部,会通过手工的方式维护一个逻辑或物理的列表。当各个异构的系统和用户需要某些数据的时候,就可以索取该列表了。对于这个列表的维护,包括数据添加、删除、更新以及冲突处理,都是由各个部门的工作人员通过一系列的讨论和会议进行处理的。业务规则(Business Rules)是用来反映价值的一致性,当业务规则发生改变或者出现类似的情况时,这样高度手工管理的流程容易发生错误。由于列表管理是通过手工管理的,其列表维护的质量取决于谁参加了变更管理流程,一旦某人缺席,将会影响列表的维护。
Level 2 :同等访问(通过接口的方式,各个系统与主数据主机之间直接互联)
MDM Level 2与MDM Level 1相比,引入了对主数据的(自动)管理。通过建立数据标准,定义对存储在中央知识库(Central Repository)中详细数据的访问和共享,为各个系统间共享使用数据提供了严密的支持。中央知识库(Central Repository)通常会被称为“主数据主机(Master Data Host)”。这个知识库可以是一个数据库或者一个应用系统,通过在线的方式支持数据的访问和共享。
创建、读取、更新和删除 (CRUD)是处理基本功能的典型编程术语。即便在MDM中,CRUD处理也是基本功能。你的数据库如果仅仅支持CRUD处理并不意味着你实现了MDM。 MDM Level 2引入了“同等访问”(peer-based access),也就是说一个应用可以调用另一个应用来更新或刷新需要的数据。当CRUD处理规则定义完成后,MDM Level 2 需要客户或“同等”应用格式化请求(和数据),以便和MDM知识库保持一致。MDM知识库提供集中的数据存储和供应(provisioning)。在这个阶段,规则管理、数据质量和变更管理必须在企业范围内作为附加功能定制构建。
Level 3 :集中总线处理
与MDM Level 2相比,MDM Level 3打破了各个独立应用的组织边界,使用各个系统都能接受的数据标准统一建立和维护主数据(MDM Level 2的主数据主机上存储的数据还是按照各个系统分开存储的,没有真正的整合在一起)。
集中处理意味着为MDM构建了一个通用的、基于目标构建的平台。大多数公司发现MDM正在挑战他们现有的IT架构:他们拥有太多的独立平台处理主数据。 MDM Level 3 集中数据访问、控制跨不同应用和系统使用数据。这极大的降低了应用数据访问的复杂性,大大简化了面向数据规则的管理,使MDM比一个分散环境具有更多的功能和特点。企业主数据面临一致性的挑战。数据在不同的地方存在,数据所代表的含义也是不同的,数据的规则各个系统之间也是不一样的。集中MDM处理-通过一个公共的平台作为一个总线(HUB)-说明一个共识,从多个系统整合主题域数据,意味着使用集中、标准化的方法转换异构 *** 作数据,不管其在源系统中是什么样子,都会被整合起来。在MDM Level 3,公司对主题域内容采用集中管理方式。这意味着应用系统,作为消费者或使用主数据,拥有一个共识就是数据是主题数据内容的映像,打破了各个独立应用的组织边界。MDM Level 3支持分布主参考数据的存在。
Level 4 :业务规则和政策支持
一旦数据从多个数据源整合在一起,主题域视图超越单独的应用并表现为一个企业视图,你将获得事实的单一版本。当事实的单一版本已经能够提供出来时,来自业务主管和执行人员的必然反应经常是:“证明它”。MDM Level 4可以保证主数据反映一个公司业务规则和流程,并证实其正确性。MDM Level 4通过引入主数据来支持规则,并对MDM总线以及其它外部系统进行完整性检查。由于多数公司相对比较复杂,影响业务数据访问和 *** 作的规则以及策略 (rules and policies)相对也比较复杂。假定任何一个单一系统可以包含并管理与主参考数据相关的各种类型的规则是不切实际的。因此,如果一个MDM总线真正打算提供企业范围内数据的精确性,工作流和流程整合的支持是必不可少的。
Level 5 :企业数据集中
在MDM Level 5 ,总线和相关的主数据被集成到独立的应用中。主数据和应用数据之间没有明显的分隔。他们是一体的。当主数据记录详细资料被修改后,所有应用的相关数据元素都将被更新。这意味着所有的消费应用和源系统访问的是相同的数据实例。这本质上是一个闭环的MDM:所有的应用系统通过统一管理的主数据集成在一起。在这个级别,所有在系统看起来都是事实的同一个版本。 *** 作应用系统和MDM内容是同步的,所以当变更发生时, *** 作应用系统都将更新。在那些熟悉的MDM架构风格中,持久总线架构,当一个总线更新所有的 *** 作应用系统将体现这种变更,形成改变的直接 *** 作视图。在注册环境中,当数据数据更新时,总线将通过Web服务连接相关系统应用事务更新。因此,MDM Level 5提供一个集成的,同步的架构,当一个有权限的系统更新一个数据值时,公司内所有的系统将反映这个变更。系统更新完数据值后不要单选其他系统中相应值的更新:MDM将使这种更新变的透明。
从MDM Level 4到MDM Level 5意味着MDM功能性不是在一个应用内被特殊设计或编码的。这还意味着主数据传播和供应不需要源系统专门的开发或支持。所有的应用清楚的知道他们并不拥有或控制主数据。他们仅仅使用数据来支持他们自己的功能和流程。由于MDM总线和支持的IT基础架构,所有的应用可以访问主参考数据。一个公司在完成MDM Level 5后将使他们所有的应用连在一起—既包括 *** 作的也包括分析的—所有访问主数据是透明的。举例说明,当一个客户更新她的状态—不要管注册该变更的系统—数据变更将被广播到所有的应用平台(因此一致起来)。MDM Level 5是把数据概念作为一种service来实现。MDM Level 5保证了一个一致的主数据主题域企业映像。定义“客户”和其他应用接受客户主数据业务规则变化实际上是一回事。MDM Level 5移走了主数据的最后一个障碍:统一采用数据定义、授权使用和变更传播。
以上就是关于为什么说hbase是一个面向列的数据库全部的内容,包括:为什么说hbase是一个面向列的数据库、Greenplum集群部署和架构优化,我总结了5000字的心得、Hadoop生态系统-新手快速入门(含HDFS、HBase系统架构)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)