数据库开发工程师需要学习哪些课程?

数据库开发工程师需要学习哪些课程?,第1张

数据库开发工程师需要学习的课程有:

1、计算机导论

内容提要:为新学生提供一个关于计算机科学与技术学科的入门介绍,使他们对该学科有一个整体的认识,并了解该专业的学生应具有的基本知识和技能以及在该领域工作应有的职业道德与应遵守的法律准则。

2、数字电路与数字逻辑

内容提要:介绍数字逻辑与数字系统的基本概念、分析方法和设计原理,包括开关理论基础、组合逻辑、时序逻辑、可编程逻辑器件、数字系统等。

3、计算机组成原理与汇编语言

内容提要:以冯诺依曼计算机模型为出发点,介绍计算机的组织结构和工作原理,剖析计算机的运算器、存储器、控制器和输入输出设备的结构、工作原理和相互关系;介绍 80X86指令系统、汇编语言与汇编指令、汇编程序与汇编过程、简单汇编程序设计、汇编语言与高级语言的接口、宏汇编等。

4、计算机网络

内容提要:介绍数据通信的基本概念和计算机网络的基本原理,包括计算机网络的体系结构、数据通信的基本方法和协议、计算机网络的主要应用协议;同时介绍计算机网络系统的安全和管理知识,使学生对数据通信和计算机网络有一个全面理解。

5、计算机体系结构

内容提要:研究计算机系统结构的基本概念、基本原理、基本结构和基本分析方法,使同学在具有一定的软硬件知识基础上能综合认识计算机系统的软硬件功能分配与各种不同结构类型机器的特性和性能评价方法。为研究、开发、应用高级计算机系统打下基础。确立全面、系统的观点和学会定量分析问题的方法。

6、离散数学

内容提要:包括集合论、数理逻辑、图论、组合数学等内容,形式化的数学证明贯穿此课程。

7、高级程序设计语言

内容提要:分别以 C、C#或JAVA为例,介绍程序设计和语言,程序的基本数据结构、类型定义、简单类型和结构化类型、程序的基本控制结构、结构化程序设计、面向对象的程序设计等。

8、算法分析与设计

内容提要: 本课程延续数据结构课程的学习,从算法分析和设计的角度出发,除去传统的分类查找算法和一般的设计方法外,主要内容包括如下几个部分:算法研究的理论基础,递归分析技术,基本算法设计策略(几类经典算法学习), 多项式运算与 FFT ,串匹配,概率分析算法。 希望通过这一课程的学习,使学生能对现代的算法设计及分析的基本工具能有较全面的掌握。

9、数据结构

内容提要:介绍线性表及其链接存储结构与算法、数组与矩阵、堆栈与队列、广义表的存储结构与多元多项式表示、串与文本编辑、排序、树、图、文件结构。

10、数据库系统原理

内容提要:介绍数据库系统的基本概念、原理、方法及应用,主要包括数据库系统概论、数据库管理系统实现技术、数据库存储结构及其他类型的数据库系统。

11、编译技术

内容提要:介绍编译原理的理论和实践,包括编译程序设计、词法分析、语法分析、符号表、声明和存储管理、代码生成以及优化技术。

12、 *** 作系统

内容提要:介绍 *** 作系统的设计与实现,包括 *** 作系统各组成部分的概述、互斥性和同步性、处理器实现、调度算法、存储算法、设备管理和文件系统。

数据库开发工程师是指设计、开发、维护管理大型数据库的专业人才。

第一类是MySQL,以自由软件为主,以社团式开发为代表。版本选择4.0,侧重于在Linux平台(RedHat8.0)。MySQL数据库短小精悍,速度比较快,它是自由软件产品,现在美国国家航天局的数据库系统就是MySQL。在很多中小型的ICP有着广泛的应用。

第二类是SQL Server 2000,中小型企业数据库,界面友好,可 *** 作性强,在数据库市场占有很大的份量,SQL Server 2000是企业产品的代表,定位数据库中低端市场。

第三类是Oracle9i,中大型企业数据库,跨平台,在数据库中高市场占有很大的份量,Oracle9i介绍主要是Windows 2000平台和Linux平台(RedHat8.0)。Oracle9i在金融、电信、银行有很多经典应用。

1、需要学习Java基础

很多人好奇学习大数据需不需要学Java,正确答案是需要。一方面Java是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言另一方面Hadoop以及其他大数据处理技术很多都是用Java开发,例如Apache的基于Java的HBase和Accumulo以及

ElasticSearchas,因此学习Hadoop的一个首要条件,就是掌握Java语言编程。

2、需要学习是Linux系统、Hadoop生态体系

大数据的整个框架是搭建在Linux系统上面的,所以要熟悉Linux开发环境。而Hadoop是一个开源的分布式计算+分布式存储平台,是一个大数据的基础架构,它能搭建大型数据仓库,PB级别数据的存储、处理、分析、统计等业务。在这一阶段,你必须要掌握Hadoop的核心组件,包括分布式文件系统HDFS、资源调度管理系统YARN以及分布式计算框架MapReduce。

3、需要学习是分布式计算框架Spark&Storm生态体系

随着学习的深入,在具备一定的基础之后,你就需要学习Spark大数据处理技术、Mlib机器学习、GraphX图计算以及Strom技术架构基础和原理等知识。Spark无论是在性能还是在方案的统一性方面,都有着极大的优越性,可以对大数据进行综合处理:实时数据流处理、批处理和交互式查询。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9956927.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-03
下一篇 2023-05-03

发表评论

登录后才能评论

评论列表(0条)

保存