java– 具有中心,半径和法向量的圆周上的3d点

java– 具有中心,半径和法向量的圆周上的3d点,第1张

概述我的问题类似于HowtoMakeaPointOrbitaLine,3D,但那里的答案似乎没有解决我的问题.我正在寻找的是一般解决方案.为了记录,我试图解决OpenGLES(Java/Android)中的问题.我有一个圆圈,其中心有一个3D点,半径和一个3D矢量,用于指定圆所在平面的法线.我需要找到表示圆周

我的问题类似于How to Make a Point Orbit a Line, 3D,但那里的答案似乎没有解决我的问题.我正在寻找的是一般解决方案.

为了记录,我试图解决OpenGL ES(Java / AndroID)中的问题.

我有一个圆圈,其中心有一个3D点,半径和一个3D矢量,用于指定圆所在平面的法线.

我需要找到表示圆周上的点的3D点,该点在“旋转的”X轴的给定角度(根据法线向量旋转).

我已经在成员函数的point类中实现了一个实现,pointAt在有限的情况下工作.具体来说,在我目前的实现中,我假设圆位于XY平面并相应地返回一个点然后,因为我知道圆实际上位于XZ平面中,我只是在返回的点中交换Y和Z值并且它起作用.但是,这不是一般解决方案,这就是我需要的.

当我尝试在How to Make a Point Orbit a Line, 3D中给出的算法时,我得到的分数远远超出它们应该存在的位置.

那么,我怎么能计算出这样一个圆周上的一个点呢?

[编辑]
我想我的解释还不够.我的假设是圆在X-Y平面中“正常”,在Z方向上具有法向矢量(0,0,1)-1.如果需要圆周上的点,则该点由以下定义:

x = R*cos(a) + Cxy = R*sin(a) + Cy

其中R是半径,Cx和Cy是圆心的X和Y坐标,a是从矢量到圆的中心点并与X轴平行的角度.

现在,如果圆没有沿Z轴指向的法线向量,而是一些任意(x,y,z)向量,我该如何找到相同的点?

解决方法:

您需要的是一个用于放置圆的新坐标系.作为任何常见的坐标系,我们希望基矢量彼此正交,并且每个都具有长度1.我将命名基矢量v1,v2和v3,它们按顺序对应于x,y和z.

替换z的新基矢量,即v3,由圆的法线矢量给出.如果尚未标准化,您需要在此处对其进行标准化:

     [ v3x ]v3 = [ v3y ] = normalize(circlenormal)     [ v3z ]

接下来,我们将选择v1.这可以是与v3正交的任意向量.由于我们希望它取代x轴,我们可以选择它的y分量为0:

               [ v3z ]v1 = normalize([ 0   ])               [ -v3x]

注意,该向量与v3的点积为0,这意味着这两个向量确实是正交的.如果圆的法向矢量精确地指向y方向,则矢量将是简并的.如果您的使用中存在问题,我会告诉您如何处理.

现在我们只需要最后一个向量,它可以计算为另外两个的叉积:

v2 = v3 x v1

这已经归一化,因为v1和v3被归一化,并且是正交的.

有了这个新基础,圆上的点现在可以计算为:

p = centerPoint + R * (cos(a) * v1 + sin(a) * v2)

将整个事物更接近代码形式(未经测试):

// Only needed if normal vector (nx, ny, nz) is not already normalized.float s = 1.0f / (nx * nx + ny * ny + nz * nz);float v3x = s * nx;float v3y = s * ny;float v3z = s * nz;// Calculate v1.s = 1.0f / (v3x * v3x + v3z * v3z);float v1x = s * v3z;float v1y = 0.0f;float v1z = s * -v3x;// Calculate v2 as cross product of v3 and v1.// Since v1y is 0, it Could be removed from the following calculations. KeePing it for consistency.float v2x = v3y * v1z - v3z * v1y;float v2y = v3z * v1x - v3x * v1z;float v2z = v3x * v1y - v3y * v1x;// For each circle point.px = cx + r * (v1x * cos(a) + v2x * sin(a))py = cy + r * (v1y * cos(a) + v2y * sin(a))pz = cz + r * (v1z * cos(a) + v2z * sin(a))
总结

以上是内存溢出为你收集整理的java – 具有中心,半径和法向量的圆周上的3d点全部内容,希望文章能够帮你解决java – 具有中心,半径和法向量的圆周上的3d点所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/1101016.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-28
下一篇 2022-05-28

发表评论

登录后才能评论

评论列表(0条)

保存