将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是

将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是,第1张

解答:解:(1)如图:(2分)

(2)连接GD.

∵AB=BC=

5
2
2
,MN=NP=
15
2
2
,MG=DP=5
2

∴MP=15,

∴GD=15-10

2
,(4分)

∴S△ABC=

1
2
×
5
2
2
×
5
2
2
=
25
4
,(5分)

S矩形EFGD=5

2
×(15-10
2
)=75
2
-100.  (6分)

∴封闭图形ABCDEFG的面积=S△ABC+S矩形EFGD

=

25
4
+75
2
-100=75
2
-
375
4
.           (7分)

解:

设长方体的宽为x分米,则长为2x分米,高为x分米。

(x+x+2x)4=32

4x4=32

16x=32

16x/16=32/16

x=2

22=4(分米)

(22+24+22)2=40(平方分米)

答:要用40平方分米大的纸板

以上就是关于将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是全部的内容,包括:将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是、把一个棱长之和为32分米的长方体,从最长棱的中间切开,得到两个无盖正方体。你能求出要用多大的硬纸板吗、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9436602.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存