app移动端数据采集大数据收集的主要来源之一

app移动端数据采集大数据收集的主要来源之一,第1张

app移动端数据采集大数据收集的主要来源之一是物联网系统。根据查询相关公开信息显示,app移动端数据采集大数据收集的主要来源包括有物联网系统、传统信息处理系统以及互联网应用,物联网产生的数据多以非结构化数据为主,包括视频、音频、传感数据等等。

简述地理数据采集的渠道来源。

正确答案:(1)来自于观测、测量部门的有关专业数据。(2)来自于统计年鉴、统计公报中的有关自然资源及社会经济发展数据。(3)来自于有关单位或个人的不定期的典型调查数据、抽样调查数据。(4)来自于政府公报、政府文件中的有关数据。(5)来自于档案、图书等文献资料中的有关数据。(6)来自于互联网(internet)的有关共享数据。(7)地图数据。主要包括各种比例尺的地形图、影像地图、专题地图等。(8)遥感数据。主要包括各种航空遥感数据和卫星遥感数据。(9)其他来源的有关数据。

talkingdata的数据来源主要有几种渠道:

使用td的数据分析里面的sdk的应用的应用内数据,以及应用可以获取的机器内数据

商业合作中,从合作商户中获取的数据(譬如招商银行的模型),据说td和第三方合作的条件除了钱,还要拿数据的,譬如交易流水

花钱从其他第三方数据公司购买

从一些数据体量巨大的公司购买,譬如运营商

其他渠道

网站分析的数据来源

Avinash Kaushik在他的《Web Analytics》一书中将数据的来源分为4部分:点击流数据(Clickstream)、运营数据(Outcomes)、调研数据(Research/Qualitative)和竞争对手数据(Competitive Data)。点击流数据主要指的是用户浏览网站时产生的数据;Outcomes我更习惯叫做运营数据,主要指用户在网站中应用服务或者购买产品时记录下来的数据;调研数据主要是网站通过某些用户调研手段(线上问卷或者线下调研)获取的一些定性数据;Competitive Data直译为竞争对手数据可能不太合适,因为根据Avinash Kaushik的阐述,更像是跟网站有业务关系或竞争关系或存在某种利益影响的一切网站的可能的数据来源。

在获取上述几类数据的同时,也许我们还可以从其他方面获取一些更为丰富的数据。下面是我对网站分析数据获取途径的整理:

网站内部数据

网站内部数据是网站最容易获取到的数据,它们往往就存放在网站的文件系统或数据库中,也是与网站本身最为密切相关的数据,是网站分析最常见的数据来源,我们需要好好利用这部分数据。

服务器日志

随着网站应用的不断扩张,网站日志不再局限于点击流的日志数据,如果你的网站提供上传下载、视频音乐、网页游戏等服务,那么很明显,你的网站服务器产生的绝不仅有用户浏览点击网页的日志,也不只有标准的apache日志格式日志,更多的W3C、JSON或自定义格式的输出日志也给网站分析提供了新的方向。

网站分析不再局限于网页浏览的PV、UV,转化流失等,基于事件(Events)的分析将会越来越普遍,将会更多的关注用户在接受网站服务的整个流程的情况:上传下载是否完成,速度如何;用户是否观看的整部视频,视频的加载情况;及用户在玩网页游戏时的 *** 作和体验分析等。Google Analytics已经支持了基于事件的分析——Event Tracking,通过JS的动作响应获取数据,但是还存在着一定的局限性。

网站分析工具

当然,通过网站分析工具获得数据是一个最为简便快捷的方式,从原先的基于网站日志的AWStats、webalizer,到目前非常流行的基于JS Tags的Google Analytics、Omniture的SiteCatalyst,及JS和网站日志通吃的WebTrends。通过网站分析工具获得的数据一般都已经经过特殊计算,较为规范,如PV、UV、Exit Rate、Bounce Rate等,再配上一些趋势图或比例图,通过细分、排序等方法让结果更为直观。

但通过网站分析工具得到数据也不远只这些,上面的这些数据也一样可以通过统计网站日志获得,但网站分析工具的优势在于其能通过一些嵌入页面的JS代码获得一些有趣的结果,如Google Analytics上的Overlay或者也叫Click Density——网站点击密度分布,及一些其它的网站分析工具提供的点击热图,甚至鼠标移动轨迹图。这些分析结果往往对网站优化和用户行为分析更为有效。

数据库数据

对于一般的网站来说,存放于数据库中的数据可以大致分为3个部分:

网站用户信息,一般提供注册服务的网站都会将用户的注册账号和填写的基本信息存放在数据库里面;

网站应用或产品数据,就像电子商务的商品详细信息或者博客的文章信息,如商品信息会包含商品名称、库存数量、价格、特征描述等;

用户在应用服务或购买产品时产生的数据,最简单的例子就是博客上用户的评论和电子商务网站的用户购买数据,购买时间、购买的用户、购买的商品、购买数量、支付的金额等。

当然,这一部分数据的具体形式会根据网站的运营模式存在较大差异,一些业务范围很广,提供多样服务的网站其数据库中数据的组合会相当复杂。

其它

其它一切网站运营过程中产生的数据,有可能是用户创造,也有可能是网站内部创造,其中有一大部分我们可以称其为“线下数据(Offline Data)”。如用户的反馈和抱怨,可能通过网站的交流论坛,也有可能通过网站时公布的客服电话、即时通讯工具等,如果你相信“客户中心论”,那么显然对于这些数据的分析必不可少;另外一部分来源就是网站开展的线下活动,促销或推广,衡量它们开展的效果或投入产出,以便于之后更好地开展类似的线下推广。

外部数据

网站分析除了可以从网站内部获取数据以外,通过互联网这个开放的环境,从网站外部捕获一些数据可以让分析的结果更加全面。

互联网环境数据

即使你的网站只是一个很小的网站,但如果想让你的网站变得更好,或者不至于落后于互联网的前进脚步,那么建议你关注一下互联网的发展趋势。可以上Alexa查一下互联网中顶级网站的访问量趋势;看看comScore发布的数据或者199IT–中国互联网数据中心网站上的各种数据分析和研究资料;如果经营电子商务网站,淘宝数据中心也许会让你感兴趣。

竞争对手数据

时刻关注竞争对手的情况可以让你的网站不至于在竞争中落伍。除了在Alexa及一些其他的网站数据查询平台以外,直接从竞争对手网站上获取数据也是另外一条有效的途径,一般网站会出于某些原因(信息透明、数据展示等)将自己的部分统计信息展现在网站上,看看那些数据对于掌握你的竞争对手的情况是否有帮助。

合作伙伴数据

如果你有合作的网站或者你经营的是一个电子商务网站,也许你会有相关的产品提供商、物流供应商等合作伙伴,看看他们能为你提供些什么数据。

用户数据

尝试跟踪用户的脚步去看看他们是怎么评价你的网站的。如果你的网站已经小有名气,那么尝试在搜索引擎看看用户是怎么评价你的网站,或者通过Twitter、新浪微博等看看用户正在上面发表什么关于你的网站的言论。

当然通过用户调研获取数据是另外一个不错的途径,通过网站上的调查问卷或者线下的用户回访,电话、IM调查,可用性实验测试等方式可以获取一些用户对网站的直观感受和真实评价,这些数据往往是十分有价值的,也是普通的网站分析工具所获取不到的。

在分析网站的外部数据的时候,需要注意的是不要过于相信数据,外部数据相比内部数据不确定性会比较高。网站内部数据即使也不准确,但我们至少能知道数据的误差大概会有多大,是什么原因造成了数据存在误差。而外部数据一般都是有其他网站或机构公布的,每个公司,无论是数据平台、咨询公司还是合作伙伴都可能会为了某些利益而使其公布的数据更加可信或更具一定的偏向性,所以我们在分析外部数据是需要更加严格的验证和深入的分析。而对于用户调研中获取的数据,我们一般会通过统计学的方法检验数据是否可以被接受,或者是否满足一定的置信区间,这是进行数据分析前必须完成的一步。

一、 教育大数据的来源

教育是一个超复杂的系统,涉及 教学、管理、教研、服务 等诸多业务。与金融系统具有清晰、规范、一致化的业务流程所不同的是,不同地区、不同学校的教育业务虽然具有一定的共性,但差异性也很突出,而业务的差异性直接导致教育数据来源更加多元、数据采集更加复杂。

教育大数据产生于 各种教育实践活动 ,既包括校园环境下的教学活动、管理活动、科研活动以及校园生活,也包括家庭、社区、博物馆、图书馆等非正式环境下的学习活动;既包括线上的教育教学活动,也包括线下的教育教学活动。

教育大数据的核心数据源头是“人”和“物”——“人”包括学生、教师、管理者和家长,“物”包括信息系统校园网站、服务器、多媒体设备等各种教育装备。

依据来源和范围的不同,可以将教育大数据分为个体教育大数据、课程教育大数据、班级教育大数据、学校教育大数据、区域教育大数据、国家教育大数据等六种 。

二、 教育大数据的分类

教育数据有多重分类方式。

从数据产生的业务来源来看,包括 教学类数据、管理类数据、科研类数据 以及服务类数据。

从数据产生的技术场景来看,包括 感知数据 、业务数据和互联网数据等类型。

从数据结构化程度来看,包括 结构化数据、半结构化数据和非结构化数据 。结构化数据适合用二维表存储。

从数据产生的环节来看,包括 过程性数据和结果性数据 。过程性数据是活动过程中采集到的、难以量化的数据(如课堂互动、在线作业、网络搜索等);结果性数据则常表现为某种可量化的结果(如成绩、等级、数量等)。

国家采集的数据主要以管理类、结构化和结果性的数据为主,重点关注宏观层面教育发展整体状况。到大数据时代,教育数据的全面采集和深度挖掘分析变得越来越重要。教育数据采集的重心将向非结构化、过程性的数据转变。

三、教育数据的结构模型

整体来说,教育大数据可以分为四层,由内到外分别是基础层、状态层、资源层和行为层。

基础层:也就是我们国家最最基础的数据,是高度保密的数据; 包括教育部2012年发布的七个教育管理信息系列标准中提到的所有数据,如学校管理信息、行政管理信息和教育统计信息等;

状态层,各种装备、环境与业务的运行状态的数据; 必然设备的耗能、故障、运行时间、校园空气质量、教室光照和教学进度等;

资源层,最上层是关于教育领域的用户行为数据。 比如PPT课件、微课、教学视频、、游戏、教学软件、帖子、问题和试题试卷等;

行为层:存储扩大教育相关用户(教师、学生、教研员和教育管理者等)的行为数据, 比如学生的学习行为数据、教师的教学行为数据、教研员的教学指导行为数据以及管理员的系统维护行为数据等。

不同层次的数据应该有不同的采集方式和教育数据应用的场景。

关于教育大数据的冰山模型,目前我们更多的是采集一些显性化的、结构性的数据,而存在冰山之下的是更多的非结构化的,而且真正为教育产生最大价值的数据是在冰山之下的。

参考文献:

教育大数据的来源与采集技术  邢蓓蓓

php有个超全局变量可以满足你的需求,$_SERVER是个很强大的超全局变量,$_SERVER[‘>

以上就是关于app移动端数据采集大数据收集的主要来源之一全部的内容,包括:app移动端数据采集大数据收集的主要来源之一、简述地理数据采集的渠道来源。、Talking Data的数据源是怎么获取到的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9578554.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存