协方差矩阵

协方差矩阵,第1张

在统计学上,协方差用来刻画两个随机变量之间的相关性,反映的是变量之间的二阶统计特性,两个随机变量Xi和Yj的协方差定义为

所以

是一个矩阵,其 i , j 位置的元素是第 i 个与第 j 个随机向量(即随机变量构成的向量)之间的协方差。
设X1,X2,,Xn为一组随机变量,记X=(X1,X2,,Xn)T为由这n个随机变量构成的随机向量,假设每个随机变量有m个样本,将所有的样本拼接在一起可以得到如下的 样本矩阵

协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。因此样本矩阵的每行是一个样本,每列为一个维度,所以我们要按列计算均值。 但是 peghoty 博客中用的是矩阵第i行元素表示第i个随机变量Xi的m个样本 ,所以以下分析暂时用的peghoty的方案。

引入向量αi和βi

αi是样本矩阵的行向量,βi是样本矩阵的列向量,所以样本矩阵表示为

对于n维的随机变量X=(X1,X2,…,Xn)T的协方差矩阵定义为

协方差矩阵中的对角线元素表示方差,非对角线元素表示随机向量X的不同随机量之间的协方差 ,因此协方差矩阵可以作为 刻画不同分量之间相关性的一个评判量 ,不同分量之间的相关性越小,则C的非对角线元素的值就越小,特别地,如果不同分量彼此不相关,那么C就变成一个 对角阵
注意:我们并不能得到协方差矩阵C的真实性,只能根据所提供的X的样本数据,对其进行近似估计,因此,这样计算得到的协方差矩阵是依赖于样本数据的,通常提供的样本数目越多(m越大),样本在总体中的覆盖面就越广,所得协方差矩阵就越可靠。

协方差公式推导

协方差 (Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

协方差的计算公式如下所示:

方差的计算公式如下所示:

可以看到协方差是度量两个变量的总体误差,而方差只考虑单变量的离散程度。

如果连个变量相互独立,则协方差为零。

则它的协方差矩阵计算公式为:

我们将该矩阵命名为矩阵A,这个矩阵共有三种属性,每种属性有5个变量,我们需要计算学科与学科之间的协方差,综合在一起就构成了协方差矩阵。

我们将语文、数学、英语分别编号为1、2、3,则它们之间的协方差记为E11、E12、E13、E22、E23、E33,最终该矩阵的协方差矩阵为:

可以根据协方差计算公式进行计算:

首先,我们需要得到这三科的平均成绩:

然后用矩阵A减去平均成绩(三科分别减去各科的均值),得到新的矩阵:

E12的计算公式为:

由于样本减均值刚刚已经计算完成,这里直接进行计算:

同理,E13的计算公式为:

根据Eij=Eji的性质,得到新的矩阵:

然后除以样本的个数5,得到最后的协方差矩阵:

知道了协方差矩阵如何计算之后我们来使用numpy内置的函数 cov() 来计算协方差矩阵。假设有两个变量 x0 和 x1 ,有三组观测(0,2)(1,1)和(2,0)。

值得注意的是, npcov(x) 函数的默认输入矩阵x每一行代表一个特征,每一列代表一个观测,所以在进行协方差矩阵计算的时候需要对输入矩阵进行转置,或者将默认参数设置为False,如 npcov(x,rowvar=False) 。

输出:

亦或者:

输出:

相关系数是研究变量之间线性相关程度的量。

相关系数的计算公式如下所示:

可以表示X和Y线性关系的紧密程度

参考:
协方差 - 百度百科
相关系数 - 百度百科
协方差矩阵概念

工具栏analysis----scale----reliability
analysis(不同spss版本略不同,我使用的是150),点选变量,点击设置statistics,选择inter-item的选项,包含输出相关矩阵和协方差矩阵。运行后,在output文件中可以看到结果。

1,首先,打开excel表,鼠标点击要编辑的单元格;

2,点击菜单栏的公式——“插入函数”;

3,在函数对话框内输入“COVARIANCEP”,点击确定;

4,接下来设置函数参数,在ARRAY1处输入A2:A8;

5,在ARRAY2处输入B2:B8;

6,点击确定后就获得了销售量的协方差。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10255290.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存