在SPSS软件里有2种不同的删除方法,整条删除和成对删除。
当然,这种方法简单易行,但缺点也很明显,首先我们经常会遇到的情况是观测值很少,这种删除会造成样本量不足,其次,直接删除的观测很多,也可能会改变变量的原有分布,从而造成统计模型不够稳定。
(2)暂且保留,待结合整体模型综合分析
通常我们观测到的异常值,有时在对于整个模型而言,其异常性质并没有观测到的明显,因此最好综合分析一下,像回归分析,我们经常利用残差分布信息来判断模型优劣,残差有没有超出经验范围(+3标准差),呈现什么分布等,另外对于整个模型而言,会有一些指标像Mahalanobis、Cook's、协方差比率等可以提供某条观测或整体的拟合信息,这些指标也会提示分析人员的异常值信息。如果对于整个模型而言,并不是很明显时,建议保留。
(3)如果样本量很小,可以考虑使用均值或其他统计量取代
这不失为一种折中的方法,大部分的参数方法是针对均值来建模的,用均值取代,实际上克服了丢失样本的缺陷,但却丢失了样本“特色”,可以说是不大不小的错误。当然如果是时序数据, 用于取代的统计量,可供选择的范围就会多一些,可以针对序列选择合适的统计量取代异常值,也较少存在上述问题。
(4)将其视为缺失值,利用统计模型填补
该方法的好处是可以利用现有变量的信息,对异常值(缺失值)填补。不过这里最好要视该异常值(缺失值)的特点而定,例如需视是完全随机缺失、随机缺失还是非随机缺失的不同情况而定。
(5)不做过多处理,根据其性质特点,使用稳健模型加以修饰
如果按参数性质分的话,可以将稳健方法分为参数、非参和半参3种情况,这大致与通常的关于参数的假设、优点一样,请参见:
(6)使用抽样技术或模拟技术,接受更合理的标准误等信息
抽样样本(SPSS默认是1000)所计算出的均值的标准误,一般来说会更合理,这可以有效应对异常值的影响,但前提是原始样本量不能太少(小于10),小样本的结果不够稳定。另外模拟技术可以利用先验分布特征和样本信息来构建事后预测的概率分布,进行事后模拟,这种技术现在发展的很好,在异常值的应对中,表现良好。
标准残差,就是各残差的标准方差,即是残差的平方和除以(残差个数-1)的平方根 。以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ表示。δ遵从标准正态分布N(0,1)。
实验点的标准化残差落在(-2,2)区间以外的概率≤005。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归线拟合。
残差图”以回归方程的自变量为横坐标,以残差为纵坐标,将每一个自变量的残差描在该平面坐标上所形成的图形。当描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。否则,说明回归直线对原观测值的拟合不理想。
扩展资料:
在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ表示。δ遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤005。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归直线拟合。
显然,有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。
参考资料来源:百度百科-残差
最主要的是两个表,一个是拟合优度表,给出判定系数R方。二是回归系数表,给出回归系数估计值及其显著性检验的结果。残差的直方图,主要是用来判断残差是否服从正态分布。因为经典回归模型的基本假设之一是,随机误差项服从正态分布。
SPSS残差分析,这个散点图能说明残差在-2到+2之间,可以解释大部分预测值,也证明了你的这个回归方程是有效的。
SPSS(Statistical Product and Service Solutions),“统计产品与服务解决方案”软件。最初软件全称为“ 社会科学统计软件包”(SolutionsStatistical Package for the Social Sciences),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为“统计产品与服务解决方案”,这标志着SPSS的战略方向正在做出重大调整。
回归方程是根据样本资料通过 回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的数学表达式。 回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
residual在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。δ与σ之比,称为标准化残差,以δ表示。δ遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤005。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归线拟合。
所谓残差是指实际观察值与回归估计值的差。(如图)
显然,有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰 。
残差图
residual plot
指以残差为纵坐标,以任何其他指定的量为横坐标的散点图。
如在分析测试中常用的散点图是以自变量为横坐标的残差图。可用它来检查回归线的异常点。
残差图的评价
“残差图”以回归方程的自变量为横坐标,以残差为纵坐标,将每一个自变量的残差描在该平面坐标上所形成的图形。当描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。否则,说明回归直线对原观测值的拟合不理想。
从“残差图”可以直观地看出残差的绝对数值都比较小,所描绘的点都在以0为横轴的直线上下随机散布,回归直线对各个观测值的拟合情况是良好的。说明变量X与y之间有显著的线性相关关系。
残差平方和
编辑本段
概念:
为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异称残差,把每个残差的平方后加起来 称为残差平方和,它表示随机误差的效应。
公式
意义:
每一点的y值的估计值和实际值的平方差之和称为残差平方和,而y的实际值和平均值的平方差之和称为总平方和。
计算:
公式;散点图。
残差平方和曲线拟合:
用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(xi,yi)(i=1,2,…m),其中各xi是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型 ,式中c=(c1,c2,…cn)是一些待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解方程组来确定参数,从而求得拟合曲线。至于非线性模型,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性最小二乘拟合。
如果还是不明白的话,可以去图书馆看一下相关的书籍。
“残差”蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值。它应符合模型的假设条件,且具有误差的一些性质。利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。残差有多种形式,上述为普通残差。为了更深入地研究某一自变量与因变量的关系,人们还引进了偏残差。此外, 还有学生化残差、预测残差等。以某种残差为纵坐标,其它变量为横坐标作散点图,即残差图 ,它是残差分析的重要方法之一。通常横坐标的选择有三种:(1) 因变量的拟合值;(2)自变量;(3)当因变量的观测值为一时间序列时,横坐标可取观测时间或观测序号。残差图的分布趋势可以帮助判明所拟合的线性模型是否满足有关假设。如残差是否近似正态分布、是否方差齐次,变量间是否有其它非线性关系及是否还有重要自变量未进入模型等。当判明有某种假设条件欠缺时, 进一步的问题就是加以校正或补救。需分析具体情况,探索合适的校正方案,如非线性处理,引入新自变量,或考察误差是否有自相关性。
标准残差,就是各残差的标准方差,即是残差的平方和除以(残差个数-1)的平方根 。以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ表示。δ遵从标准正态分布N(0,1)。
实验点的标准化残差落在(-2,2)区间以外的概率≤005。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归线拟合。
扩展资料:
残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。“残差”蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值。
它应符合模型的假设条件,且具有误差的一些性质。利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。
为了更深入地研究某一自变量与因变量的关系,人们还引进了偏残差。此外, 还有学生化残差、预测残差等。以某种残差为纵坐标,其它变量为横坐标作散点图,即残差图 ,它是残差分析的重要方法之一。
参考资料:
百度百科-残差
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)