步进电机驱动器上的开关有D1、D2、D4-D6,其设置方法分别如下:
1、D1设置驱动程序发送脉冲的方式。 如果步进电机驱动器未发送脉冲来控制电机本身,则D1设置为OFF。 如果步进电机驱动器自身发出脉冲,则将D1设置为ON。
2、D2设置也是驱动程序发出脉冲的方式,但条件是D2设置仅在D1设置为OFF时才生效。
3、D4-D6设置步进电机的工作细分数,即步进电机旋转一圈所需的脉冲数。 细分越大,精度越高,但是产生误差越容易。
扩展资料:
步进电机驱动器的工作原理:
步进电机驱动器的原理由单极性直流电源供电。只要步进电动机的相绕组在适当的时机通电,步进电动机就可以逐步旋转。
步进电机不能直接连接到工频交流或直流电源,而必须使用特殊的驱动器。如图所示,它由脉冲发生控制单元,电源驱动单元和保护单元组成。驱动单元必须直接与驱动器耦合,并且也可以理解为微计算机控制器的电源接口。
工作频率由高压UH供电,以增加导电相绕组的电流前沿,并且在通过该前沿之后,使用低压UL来维持绕组的电流。这种效果还改善了驱动器的高频性能,并消除了对串联电阻Rs的需求,从而消除了额外的损耗。
步进电机控制程序(c语言+51单片机)#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
#define ms *77
// f = 12 M
#define LEDLen 4
#define Dj_star() {IE=0x81pri_dj=0}
#define Dj_stop() {IE=0x00pri_dj=1P1=0xffshache="0"delay(800ms)delay(800ms)delay(400ms)shache = 1}
#define Chilun_Num 8
/* 齿轮数 8 个*/
#define set_display_num() { LEDBuf[0] = tmp / 1000LEDBuf[1] = tmp / 100 % 10 \
LEDBuf[2] = tmp / 10 % 10 LEDBuf[3] = tmp % 10 }
uchar LEDBuf[LEDLen] = {0,0,0,0}
void read_num () /* 读播码盘 到 set_round_num * 8 */
void display ()
void delay(uint delay_time) { uint ifor (i=0i <delay_time i++) }
void run ()
void fx_run()
uint round_num = 0 /* 记录已转的 齿轮数 , 中断1次 加 1*/
uint set_round_num = 0 /* 播码盘设置 圈数 */
uint set_pwm_width = 0 /* 播码盘设置 步进电机 正向速度 */
bit one_round_flg = 0
sbit led_1000 = P0^7 //use for display
sbit led_100 = P0^6 //use for display
sbit led_10= P0^5 //use for display
sbit led_1 = P0^4 //use for display
sbit key_start = P3^0
sbit key_puse = P3^0
sbit key_clear = P3^1
/* P3^2 接齿轮传感器 中断 */
sbit bujin_zx_stop = P3^3 /* 接步进电机 ,正向到位传感器 ,为 0 停机 */
sbit bujin_fx_stop = P3^4 /* 接步进电机 ,反向到位传感器 ,为 0 停机 */
sbit shache= P3^5 /* 接刹车控制继电器 0 电位有效 */
sbit pri_dj= P3^6 /* 接主电机控制继电器 0 电位有效 */
void main(){
TCON = 0x01
display()
while(1) {
IE="0x00"
round_num = 0
display()
if ( bujin_fx_stop ) fx_run()
while ( key_start )
delay ( 8ms )
if(!key_start){
read_num()
//set_round_num = 8
while ( !key_start )
run ()
fx_run()
}
}
}
void run () {
#define Delay_time 180
/* 转一圈 50 次循环,每循环 4 步 ,50 * 4 = 200 , 200 * 1。8 = 360 */
uchar i
P1 = 0xff
set_pwm_width = 15 + set_pwm_width / 10
while ( 1 ) {
while( !shache | !key_start )
Dj_star()
for ( i="0" bujin_zx_stop &!pri_dji++ ){
P1 = 0xf9
delay ( Delay_time ) // bujin_zx_stop = P3^3
P1 = 0xfc // bujin_fx_stop = P3^4
delay ( Delay_time) // key_puse = P3^0
P1 = 0xf6 // key_clear = P3^1
delay ( Delay_time ) // shache= P3^5
P1 = 0xf3 // pri_dj= P3^6
delay ( Delay_time )
if( i == set_pwm_width ) { P1 = 0xffi = 0one_round_flg = 0while ( !one_round_flg &key_puse )}
if(!key_puse) { delay(4ms) if(!key_puse) break }
}
P1 = 0xff
if ( pri_dj ) break
if ( !key_puse ) {
delay ( 8ms )
if ( !key_puse ) {
Dj_stop()
while ( !key_puse )
// next pree key
while( !shache )
while(1){
while ( key_puse & key_clear )
delay ( 8ms )
if ( !key_clear ) { round_num = 0display()}
if ( !key_puse ) break
}
while( !key_puse )
delay(8ms)
while( !key_puse )
}
}
}
}
void ext_int0(void) interrupt 0 { /* 主电机 齿轮 中断 */
uint tmp
EA = 0
if( !pri_dj ){
round_num ++
if (round_num % Chilun_Num == 0 ){
one_round_flg = 1
tmp = round_num / Chilun_Num
set_display_num()
P0 = 0xf0
P0 = P0 | LEDBuf[0]
led_1000 = 0
P0 |= 0xf0
P0 = 0xf0
P0 = P0 | LEDBuf[1]
led_100 = 0
P0 |= 0xf0
P0 = 0xf0
P0 = P0 | LEDBuf[2]
led_10= 0
P0 |= 0xf0
P0 = 0xf0
P0 = P0 | LEDBuf[3]
led_1 = 0
P0 |= 0xf0
P0 = 0xf0
}
if ( round_num >= set_round_num ) Dj_stop()
}
EA = 0x81
}
void display(){
uchar i
uint tmp = 0
tmp = round_num / Chilun_Num
set_display_num()
for(i = 0i <LEDLen i ++){
P0 = 0xf0
P0 = P0 | LEDBuf[i]
if(i==0) led_1000 = 0 //P0^4
if(i==1) led_100 = 0 //P0^5
if(i==2) led_10= 0 //P0^6
if(i==3) led_1 = 0 //P0^7
P0 |= 0xf0
}
P0 = 0xf0
}
void read_num(){
/* 读播码盘 到 set_round_num ,set_pwm_width */
uchar tmp
P2 = 0xFF
P2 = 0xEF // 1110 1111
delay ( 1ms )
tmp = ~(P2 | 0xF0)
P2 = 0xDF // 1101 1111
delay ( 1ms )
tmp = (~(P2 | 0xF0 )) * 10 + tmp
set_round_num = tmp
P2 = 0xBF // 1011 1111
delay ( 1ms )
tmp = (~(P2 | 0xF0))
P2 = 0x7F // 0111 1111
delay ( 1ms )
tmp = (~(P2 | 0xF0)) * 10 + tmp
set_round_num = set_round_num + tmp * 100
set_round_num = set_round_num * Chilun_Num
P2 = 0xFF
P1 = 0xbF // 0111 1111
delay ( 1ms )
tmp = ~(P2 | 0xF0)
P1 = 0xFF
P2 = 0xFF
P1 &= 0x7F // 1011 1111
delay ( 1ms )
tmp = (~(P2 | 0xF0)) * 10 + tmp
set_pwm_width = tmp
P1 = 0xFF
P2 = 0xFF
}
void fx_run(){
#define f_Delay_time 180
while ( bujin_fx_stop ) { /* 反向 回车 直到 传感器 动作*/
P1 = 0xf3 //0011
delay ( f_Delay_time )
P1 = 0xf6 //0110
delay ( f_Delay_time )
P1 = 0xfc //1100
delay ( f_Delay_time )
P1 = 0xf9 //1001
delay ( f_Delay_time )
}
P1 = 0xff
}
可编程序控制器(PLC)控制脉冲的数量和频率以及电机各相绕组的功率顺序,控制步进电机的旋转。
通常电动机的转子是永磁体。当电流流过定子绕组时,定子绕组产生矢量磁场。磁场将驱动转子旋转一个角度,使转子的一对磁场的方向与定子的方向一致。当定子的矢量磁场旋转一个角度时。转子也随磁场旋转一个角度。
每次输入电脉冲时,电机旋转一个角度前进一步。其输出角位移与输入脉冲数成正比,转速与脉冲频率成正比。改变绕组通电和电机反转的顺序。因此可以通过控制电机各相绕组的脉冲数、频率和功率序列来控制步进电机的旋转。
扩展资料:
步进电机控制技术发展概况:
在微电子技术特别是计算机技术发展之前,控制器脉冲信号发生器是完全由硬件实现的。控制系统采用独立的元件或集成电路构成控制回路。它不仅调试和安装复杂,而且需要消耗大量的组件。一旦最终确定,如果要改变控制方案,就必须重新设计电路。
这就需要为不同的电机开发不同的驱动器。开发难度大,成本高,控制难度大,限制了步进电机的推广。
由于步进电机是将电脉冲转化为离散机械运动的装置,具有良好的数据控制特性,计算机成为步进电机理想的驱动源。随着微电子技术和计算机技术的发展,软硬件结合已成为主流。
也就是说,控制脉冲由程序产生,驱动硬件电路。单片机通过软件控制步进电机,更好地发挥了步进电机的潜力。因此,利用单片机控制步进电机已成为必然趋势,也顺应了数字化时代的潮流。
参考资料来源:
百度百科-可编程逻辑控制器
百度百科-步进电机
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)