说明
1、f(x)很难求出闭式表达式。
2、使用符号积分计算量很大,而且可能根本就无法计算。
3、可使用integral函数进行数值积分。与quad系列函数相比,integral的优势是可以计算积分限为无穷大的情况。该函数自2012a引入。
4、f(x)的值应为实数,但由于数值计算的误差可能导致结果为复数,所以计算之后对结果取实部。
5、因后续还需要对f(x)进行积分,所以用arrayfun将其写成支持向量输入的形式。
6、PFA的计算,积分上限为无穷大,但取无穷大的上限容易导致出错(我不确定是否可通过算法设置避免),因而从实际计算需要出发,上限取一个有限值,例如1000。
结果
r =
10.3200
参考代码
N=25M=4
Fw=@(w)((1-j*w).*(1-j*w/N).*(1+w.^2/N)).^-M
fx=@(X)real(arrayfun(@(x)1/(2*pi)*integral(@(w)Fw(w).*exp(-j*w*x),-inf,inf),X))
ezplot(fx,[-2 12])
ylabel('f(x)')
P=@(r)integral(fx,r,1000)-0.01
r=fsolve(P,10.3)
在matlab里没有for
i
=
1
to
80
...
endfor
这样的语法的
在matlab里应该是:
for
i
=
1:
1:
80
...
end
1:1:80
第一个1是初始值,第二个是每次+1的意思
当然如果是我古若寡闻那也请见谅~~哈哈~~
遗传算法我懂,我的论文就是用着这个算法,具体到你要遗传算法是做什么?优化什么的。。。我给你一个标准遗传算法程序供你参考:该程序是遗传算法优化BP神经网络函数极值寻优:
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量
clc
clear
%% 初始化遗传算法参数
%初始化参数
maxgen=100%进化代数,即迭代次数
sizepop=20 %种群规模
pcross=[0.4] %交叉概率选择,0和1之间
pmutation=[0.2] %变异概率选择,0和1之间
lenchrom=[1 1] %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5-5 5] %数据范围
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]) %将种群信息定义为一个结构体
avgfitness=[] %每一代种群的平均适应度
bestfitness=[]%每一代种群的最佳适应度
%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
individuals.chrom(i,:)=Code(lenchrom,bound)
x=individuals.chrom(i,:)
%计算适应度
individuals.fitness(i)=fun(x) %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness)
bestchrom=individuals.chrom(bestindex,:) %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop%染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]
%% 迭代寻优
% 进化开始
for i=1:maxgen
i
% 选择
individuals=Select(individuals,sizepop)
avgfitness=sum(individuals.fitness)/sizepop
%交叉
individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound)
% 变异
individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound)
% 计算适应度
for j=1:sizepop
x=individuals.chrom(j,:)%解码
individuals.fitness(j)=fun(x)
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(individuals.fitness)
[worestfitness,worestindex]=max(individuals.fitness)
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness
bestchrom=individuals.chrom(newbestindex,:)
end
individuals.chrom(worestindex,:)=bestchrom
individuals.fitness(worestindex)=bestfitness
avgfitness=sum(individuals.fitness)/sizepop
trace=[traceavgfitness bestfitness]%记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果分析
[r c]=size(trace)
plot([1:r]',trace(:,2),'r-')
title('适应度曲线','fontsize',12)
xlabel('进化代数','fontsize',12)ylabel('适应度','fontsize',12)
axis([0,100,0,1])
disp('适应度 变量')
x=bestchrom
% 窗口显示
disp([bestfitness x])
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)