信息技术专业考的并不难,只要大家平时跟着老师的进度好好学习,想考高分不是问题。而且信息技术方面的人才一直是供不应求,其主要的发展方向有编程、人工智能、多媒体图形图像处理以及计算机硬件方面。
有时候全国二卷难度会大于全国一卷。
高考全国卷一共有一二三套试卷,分别供不同的省份考生使用。一般全国一卷的高考使用省份主要是东部和东北部以及一些中部的省市地区,全国二卷主要是西部和西北部的一些省市自治区,全国三卷的使用省份主要西南部的几个省市。
其中全国一卷和全国二卷的使用省市相比全国三卷要多一些,在试卷的难度上全国一二卷也会比全国三卷简单一些,至于全国一卷和全国二卷的高考试题难度则每年不同,有时候是全国一卷难一些,有时候全国二卷难度会大于全国一卷。
扩展资料:
注意事项:
考试成绩的好坏往往和考生考试的心情有关,所以考生们一定要调节好考试心情,特别是刚开始的状态,利用一些小的技巧如做完试题就填涂答题卡等,这样可以避免在最后时间较紧的情况下因匆忙而图错、涂串或没有涂完而造成遗憾。
特别是英语选择题较多,涂完多数答案需要10—20分钟,所以用户做完就涂卡,我们分数就已经得到了,这时候的心情比较愉快,有利于后面试题的解答。
参考资料来源:人民网-钟秉林委员:高考统一命题并非统一试卷
参考资料来源:人民网-2019高考文综全国Ⅱ卷思想政治试卷解析
2015年高考全国卷2理科数学试题及答案解析(word精校版)
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()
(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}
【答案】A
【解析】由已知得
,故 ,故选A
(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()
(A)-1(B)0(C)1(D)2
【答案】B
(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是()
(A)逐年比较,2008年减少二氧化硫排放量的效果最显著
(B)2007年我国治理二氧化硫排放显现
(C)2006年以来我国二氧化硫年排放量呈减少趋势
(D)2006年以来我国二氧化硫年排放量与年份正相关
【答案】D
【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.
(4)等比数列{an}满足a1=3,
=21,则 ()
(A)21(B)42(C)63(D)84
【答案】B
(5)设函数
, ()
(A)3(B)6(C)9(D)12
【答案】C
【解析】由已知得
,又 ,所以 ,故 .
(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为
(A)
(B) (C) (D)
【答案】D
【解析】由三视图得,在正方体
中,截去四面体 ,如图所示,,设正方体棱长为 ,则 ,故剩余几何体体积为 ,所以截去部分体积与剩余部分体积的比值为 .
(7)过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则
=
(A)2
(B)8(C)4 (D)10
【答案】C
(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18,则输出的a=
A.0B.2C.4D.14
【答案】B
【解析】程序在执行过程中,
, 的值依次为 , ; ; ; ; ; ,此时 程序结束,输出 的值为2,故选B.
(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为
A.36πB.64πC.144πD.256π
【答案】C
【解析】如图所示,当点C位于垂直于面
的直径端点时,三棱锥 的体积最大,设球 的半径为 ,此时 ,故 ,则球 的表面积为 ,故选C.
10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A、B两点距离之和表示为x的函数f(x),则f(x)的图像大致为
【答案】B
的运动过程可以看出,轨迹关于直线 对称,且 ,且轨迹非线型,故选B.
(11)已知A,B为双曲线E的左,右顶点,点M在E上,?ABM为等腰三角形,且顶角为120°,则E的离心率为
(A)√5(B)2(C)√3(D)√2
【答案】D
(12)设函数f’(x)是奇函数
的导函数,f(-1)=0,当 时, ,则使得 成立的x的取值范围是
(A)
(B)
(C)
(D)
【答案】A
【解析】
记函数
,则 ,因为当 时, ,故当 时, ,所以 在 单调递减;又因为函数 是奇函数,故函数 是偶函数,所以 在 单调递减,且 .当 时, ,则 ;当 时, ,则 ,综上所述,使得 成立的 的取值范围是 ,故选A.
二、填空题
(13)设向量
, 不平行,向量 与 平行,则实数 _________.
【答案】
【解析】因为向量
与 平行,所以 ,则 所以 .
(14)若x,y满足约束条件
,则 的最大值为____________.
【答案】
(15)
的展开式中x的奇数次幂项的系数之和为32,则 __________.
【答案】
【解析】由已知得
,故 的展开式中x的奇数次幂项分别为 , , , , ,其系数之和为 ,解得 .
(16)设
是数列 的前n项和,且 , ,则 ________.
【答案】
【解析】由已知得
,两边同时除以 ,得 ,故数列 是以 为首项, 为公差
的等差数列,则 ,所以 .
三.解答题
(17)?ABC中,D是BC上的点,AD平分∠BAC,?ABD是?ADC面积的2倍。
(Ⅰ)求
(Ⅱ)若
=1,
=
求
和
的长.
(18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62738192958574645376
78869566977888827689
B地区:73836251914653736482
93486581745654766579
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:
满意度评分
低于70分
70分到89分
不低于90分
满意度等级
不满意
满意
非常满意
记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率
19.(本小题满分12分)
如图,长方体ABCD—A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形。
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求直线AF与平面α所成的角的正弦值。
20.(本小题满分12分)
已知椭圆C:
,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点
,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。
21.(本小题满分12分)
设函数
。
(1)证明:
在 单调递减,在 单调递增;
(2)若对于任意
,都有 ,求m的取值范围。
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分。作答时请写清题号
22.(本小题满分10分)
选修4-1:几何证明选讲
如图,O为等腰三角形ABC内一点,⊙O与ΔABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点。
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且
,求四边形EBCF的面积。
23.(本小题满分10分)
选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C1:
(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2: ,C3: 。
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求
的最大值。
24.(本小题满分10分)
选修4-5:不等式选讲
设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd;则
;
(2)
是 的充要条件。
附:全部试题答案
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)