1、基本算式法
利用2*12=24,3*8=24,4*6=24求解。一般情况下,先要看四张牌中是否有2,3,4,6,8,Q,如果有,考虑用乘法,将剩余的三个数凑成对应数。如3,3,6,10可组成(10-6/3)*3=24。如果没有2,3,4,6,8,Q,看是否能伏丛先把两个数凑成其中之一,再求解24。
2、特性求解法
1)利用0、11的运算特性求解。如(3,4,4,8)可组成3*8+4-4=24。
2)如果有两个相同的6,剩下的只要能凑成2,3,4,5都能算出24,比如6,6,3可以3*6+6=24。同理,如果有两个相同的8,剩下的只要能凑成2,3,4就能算出24。
如(2,5,8,8),(5-2)*8=24,多一个8,可以用乘法的分配律消去8,将算式改为5*8-2*8,将多余的8消去;如果有两个相同的Q,剩下的只要能凑成1,2,3就能算出24,如(9,J,Q,Q)可以12*11-12*9=24。
3、倍数法
利用24的倍数求解2*24=48,3*24=72,4*24=96,5*24=120,6*24=144想办法去凑48,72,96,120,144来求解。在具体的运算过程中,先将数乘得很大,最后再除以一个数得24。
4、巧用分数法
利用24的分数求解。先将数算成分数或小数,最后乘以一个数得24。用一个数除以一个分数,相当于乘以这个数的倒数,最后得24。
24点的口诀为见3凑8,见4凑6,见2凑12等等。
稍微特殊点的规律:2乘10+4,15+9,21+3,14+10等。
扩展资料:
“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。这里向大家介绍几种常用的、便于学习掌握的方法:
1.利用3×8=24、4×6=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。如3、3、6、10可组成(10—6÷3)×3=24等。又如2、3、3、7可组成(7+3—2)×3=24等。实践证明,这种方法是利用率最大、命中率最高的一种方法。
2.利用0、11的运算特性求解。
如3、4、4、8可组成3×8+4—4=24等。又如4、5、J、K可组成11×(5—4)+13=24等。
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)
①(a—b)×(c+d)
如(10—4)×(2+2)=24等。
②(a+b)÷c×d
如(10+2)÷2×4=24等。
③(a-b÷c)×d
如(3—2÷2)×12=24等。
④(a+b-c)×d
如(9+5—2)×2=24等。
⑤a×b+c—d
如11×3+l—10=24等。
⑥(a-b)×c+d
如(4—l)×6+6=24等。
游戏时,同学们不妨按照上述方法试一试。
需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5。
经典24点
4
4
10
10
这个难点在于先要算出一个很大的数,就是100,然后再通过减4,除4就可以得到24点:(10×10-4)÷4=24。
6
9
9
10
这个也要先算大数90,然后除6,再加9即可得24点:9×10÷6+9=24。
2
2
2
9
这个并不难,只是数字比较好玩,包含了3个2,其计算方法为:(2+9)×2+2=24。
1、概述
给定4个整数,其中每个数字只能唤厅祥使用一次;任意使用 + - * / ( ) ,构造出一个表达式,使得最终结果为24,这就是常见的算24点的游戏。这方面的程序很多,一般都是穷举求解。本文介绍一种典型的算24点的程序算法,并给出两个具体的算24点的程序:一个是面向过程的C实现,一个是面向对象的java实现。
2、基本原理
基本原理是穷举4个整数所有可能的表达式,然后对表达式求值。
表达和搏式的定义: expression = (expression|number) operator (expression|number)
因为能使用的4种运算符 + - * / 都是2元运算符,所以本文中只考虑2元运算符。2元运算符接收两个参数,输出计算结果,输出的结果参与后续的计算。
由上所述,构造所有可能的表达式的算法如下:
(1) 将4个整数放入数组中
(2) 在数组中取两个数字的排列,共有 P(4,2) 种排列。对每一个排列,
(2.1) 对 + - * / 每一个运算符,
(2.1.1) 根据此排列的两个数字和运算符,计算结果
(2.1.2) 改表数组:将此排列的两个数字从数组中去除掉,将 2.1.1 计算的结果放入数组中
(2.1.3) 对新的数组,重复步骤 2
(2.1.4) 恢复数组:将此排列的两个数字加入数组中,将 2.1.1 计算的结果从数组中去除掉
可见这是一个递归过程。步骤 2 就是递归函数。当数组中只剩下一个数字的时候,这就是表达式的最终结果,此时递归结束。
在程序中,一定要注意递归的现场保护和恢复,也就是递归调用之前与之后,现场状态应该保持一致。在上述算法中,递归现场就是指数组,2.1.2 改变数组以进行下一层递归调用,2.1.3 则恢复数组,以确保当前递归调用获得下一个正确的排列。
括号 () 的作用只是改变运算符的优先级,也就是运算符的计算顺序。所以在以上算法中,无需考虑括号。括号只是在输出时需加以考虑。
24点的源代码,因该可毕李芹以计算出4则运算手毕24 public class Test24Point{ public static void main(String[] args){ int index = 0 int temp = 0 int totalSUC = 0 int numb[] = new int[4]//the first four numbers double num[][] = new double[36][3]//three numbers after calculating double total[] = new double[6]//the number after three steps of calculating double p[][] = new double[6][8] double q[][] = new double[3][7]//System.out.println(2465%108) //System.out.println(2465/108) System.out.println("\"a--b\"means\扰凯"b-a\"") System.out.println("\"a//b\"means\"b/a\"\n") /* for(int h = 0h <= 9h ++)//Get the first four numbers for calculating and store into the array numb[4]for(int i = 0i <= 9i ++) for(int j = 0j <= 9j ++) for(int k = 0k <= 9k ++){ numb[0] = h numb[1] = i numb[2] = j numb[3] = k }*/ for(int i = 0 i <4 i ++){ numb = Integer.parseInt(args) } for(int i = 0i <3i ++)//Get two of the four to calculate and then store the new number into the array p for(int j = i + 1j <4 j ++,temp ++){ p[temp][0] = numb + numb[j] p[temp][1] = numb - numb[j] p[temp][2] = numb[j] - numb p[temp][3] = numb * numb[j]if(numb[j] != 0) p[temp][4] = numb / (double)numb[j] else p[temp][4] = 10000 if(numb != 0) p[temp][5] = numb[j] / (double)numb else p[temp][5] = 10000欢迎分享,转载请注明来源:内存溢出
评论列表(0条)