----------------------------------------------
#define LCD_DATA (*((volatile Uint16 *)0x0070E0)) // GPIOA7-A0对应DB7-DB0
#define RS GpioDataRegs.GPBDAT.bit.GPIOB0
#define RW GpioDataRegs.GPBDAT.bit.GPIOB1 //别弄错0 1 2
#define EN GpioDataRegs.GPBDAT.bit.GPIOB2 // 实际接线要对应
void InitGpio(void)
{
EALLOW
GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 0// 设置为普通GPIO使用
GpioMuxRegs.GPADIR.bit.GPIOA0 = 1 /简正搭/ 设置为输出
GpioMuxRegs.GPAMUX.bit.PWM2_GPIOA1 = 0
GpioMuxRegs.GPADIR.bit.GPIOA1 = 1
GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 0
GpioMuxRegs.GPADIR.bit.GPIOA2 = 1
GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 0
GpioMuxRegs.GPADIR.bit.GPIOA3 = 1
GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 0
GpioMuxRegs.GPADIR.bit.GPIOA4 = 1
GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 0
GpioMuxRegs.GPADIR.bit.GPIOA5 = 1
GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 0
GpioMuxRegs.GPADIR.bit.GPIOA6 = 1
GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 0
GpioMuxRegs.GPADIR.bit.GPIOA7 = 1
GpioMuxRegs.GPBMUX.bit.PWM7_GPIOB0 = 0
GpioMuxRegs.GPBDIR.bit.GPIOB0 = 1
GpioMuxRegs.GPBMUX.bit.PWM8_GPIOB1 = 0
GpioMuxRegs.GPBDIR.bit.GPIOB1 = 1
GpioMuxRegs.GPBMUX.bit.PWM9_GPIOB2 = 0
GpioMuxRegs.GPBDIR.bit.GPIOB2 = 1
EDIS
}
----------------------------------------------
一般液拦拿晶的控制线是直接对I/O口的位进行 *** 作,数据线是按字进行 *** 作。在这容易出错的是:(1)数据线地址的对应。DSP的GPIO数据地址一般为16位一个地址(F28335有的是32个GPIO一组清盯,给出了一个地址,实际上是有两个地址的,给出的那一个地址是低16位的)。需要注意的是,液晶数据线一般为8位,那么把八位数据送出的时候,实际给的是DSP的16位数据的低八位,所以接线上要接低八位的GPIO;如果接高八位的GPIO,软件上要用下面一行程序进行移位【 dat = dat <<8//左移8位,向高位移动】。(2)在进行GPIO初始化和预定义的时候,一般都会复制,但是别忘记改一些0 1 2 3等数,接线上也要一一对应,仔细检查。
2. 51程序移植到DSP的时序问题
----------------------------------------------
void Display_Data_All(uchar *hz)
{
while(*hz != '\0')
{
WriteData12864(*hz)
hz++
delay(20)//2就不够!!!!!!
}
}
----------------------------------------------
由于51单片机的晶振一般为11.0592MHz,而DSP等控制器的晶振为30MHz,实际执行起来最高有150MHz,而液晶为低速外设,所以移植后可能会不显示,显示乱码等情况。我在调试12864液晶的时候就出现过只显示乱码数字不显示汉字的情况,这不是字库损坏,而是因为写汉字的时间要比写数字的时间长,而程序中延时过短。上面程序中把delay(2)改为delay(20)就解决问题了。
实际上,真正造成影响的是,程序执行过快。它认为显示完一个字之后,又很快进入下一个字的 *** 作;实际上液晶要一定的时间才能写完(见液晶 *** 作时序图),所以写数据的程序中要加长延时。至于RS、RW、EN等控制引脚,延时与否影响不大。
3. 240128液晶的调试
240128液晶有busy和int返回信号,实际上不需要接即可。程序中也可以不测忙。。程序中写控制指令两者中间也要加长延时,更不用说写数据之间的延时。
----------------------------------------------
void lcd_regwrite(Uint16 regname,Uint16 regdata) // 写控制指令
{
lcd_regwr(regname)
delay(10)// 加长延时
lcd_regwr(regdata)
}
void lcd_character(uchar *cha,int count) // 显示中文或字符
{
int i
for(i=0i<counti++)
{
delay(10)// 加长延时
lcd_datawrite(*cha)
++cha
}
}
/*LCD12864显示程序此程序控制LCD12864液晶屏,IC为KS0108或兼容型号
图形文件获取方法:
在字模提取V21软件中 ,导入一幅128*64黑白图像.
* 参数设置:
* 参数设置->其它选项,选择纵向取模,勾上字节倒序,保留逗号,
* 取模方式为C51。
将生成的数组通过keilc等C编译软件,在编译软件中新建一工程,写入源程序如下:
unsigned char code tab[]=
{
//图像数据
}
编译此工程将得到hex文件.在QII中使用lpm_rom宏功能模块中调用此hex文件.
*
*******************************************************************************/
module newlcd(clock,rst_n,rs,rw,en,data,lcd_cs)
// I/O口声明
input clock //系统时钟
input rst_n //复位信号
output[1:0] lcd_cs //
outputrs //1:数据模式;0:指令模式
outputrw //1:读 *** 作;0:写 *** 作
outputen //使能信号,写 *** 作时在下降沿将数并答亩据举肢送出;读 *** 作时保持高电平
output[7:0] data//绝森LCD数据总线
// I/O寄存器
reg rs
reg en
reg[1:0] lcd_cs
reg[7:0] data
//内部寄存器
reg[3:0] state //状态机
reg[3:0] next_state
reg[20:0] div_cnt //分频计数器
reg[9:0] cnt //写 *** 作计数器
reg cnt_rst //写 *** 作计数器复位信号
wire[7:0] showdata //要显示的数据
reg[1:0] cs_r
reg [2:0] page_addr
reg [5:0] row_addr
//内部网线
wire clk_div//分频时钟
wire clk_divs
wire page_done //写一行数据完成标志位
wire frame_done //写一屏数据完成标志位
wire left_done
//状态机参数
parameter idle =4'b0000,
setbase_1=4'b0001,
setbase_2=4'b0011,
setmode_1=4'b0010,
setmode_2=4'b0110,
SETpage_addr_1=4'b0111,
SETpage_addr_2=4'b0101,
SETrow_addr_1 =4'b1101,
SETrow_addr_2 =4'b1111,
write_right_1 =4'b1110,
write_right_2 =4'b1010,
write_nextpage_1 =4'b1011,
write_nextpage_2 =4'b1001,
wr_data_1 =4'b0100,
wr_data_2 =4'b1100
// set_1=4'b1000
//******************************代码开始*********************************
assign rw = 1'b0 //对LCD始终为写 *** 作
//时钟分频
always@(posedge clock or negedge rst_n)
begin
if(!rst_n)
div_cnt <= 0
else
div_cnt <= div_cnt+1'b1
end
assign clk_div = (div_cnt[15:0] == 20'h7fff)
//状态机转向
always@(posedge clock or negedge rst_n)
begin
if(! rst_n)
state <= idle
else if(clk_div)
state <= next_state
end
//************************状态机逻辑*********************************
always@(state or page_done or left_done or frame_done or cnt or showdata or page_addr or row_addr or cs_r)
begin
rs <= 1'b0
en <= 1'b0
lcd_cs <= cs_r
cnt_rst <= 1'b0
data <= 8'h0
case(state)
idle:
begin
next_state <= setbase_1
cnt_rst <= 1'b1
end
//**************************初始化LCD********************************
setbase_1: //基本指令 *** 作
begin
lcd_cs <= 2'b11
next_state <= setbase_2
data <= 8'hc0
en <= 1'b1
end
setbase_2:
begin
lcd_cs <= 2'b11
next_state <= setmode_1
data <= 8'hc0
end
//******************************************************************
setmode_1:
begin
lcd_cs <= 2'b11
next_state <= setmode_2
data <= 8'h3f
en <=1'b1
end
setmode_2:
begin
next_state <= SETpage_addr_1
data <= 8'h3f
end
//******************************************************************
SETpage_addr_1: //设置页地址
begin
next_state <= SETpage_addr_2
data <=
en <= 1'b1
end
SETpage_addr_2:
begin
next_state <= SETrow_addr_1
data <=
end
SETrow_addr_1: //设置列地址
begin
next_state <= SETrow_addr_2
data <=
en <= 1'b1
end
SETrow_addr_2:
begin
next_state <= wr_data_1
data <=
end
//******************************************************************
/*
write_right_1: //写完左半屏64个,换为右半屏显示
begin
next_state <=write_right_2
row_addr <= 0
end
write_right_2:
begin
next_state <= SETpage_addr_1
end
//******************************************************************
write_nextpage_1: //写完全一行128个
begin
next_state <=write_nextpage_2
row_addr <= 0
end
write_nextpage_2:
begin
next_state <= SETpage_addr_1
end
*/
//******************************************************************
wr_data_1: //写数据到图形显示区
begin
next_state <= wr_data_2
rs <= 1'b1
en <= 1'b1
data <= showdata
end
wr_data_2:
begin
rs <= 1'b1
data <= showdata
if(left_done) //写完左半屏数据64个
begin
if(page_done) //写完一页数据128个
begin
if(frame_done) //写完一屏数据(8页)
next_state <= idle
else
// next_state <= write_nextpage_1
next_state <= SETpage_addr_1
end
else
// next_state <= write_right_1
next_state <= SETpage_addr_1
end
else
next_state <= wr_data_1
end
default: next_state <= idle
endcase
end
//********************************************************************
always@(posedge clock)
begin
if(clk_div)
begin
if(cnt_rst)
begin
cnt <= 0
end
else if(state == wr_data_2)
begin
cnt <= cnt+1'b1
end
end
end
//****************************************************
always@(posedge clock or negedge rst_n)
if(!rst_n)
begin
cs_r <= 2'b01
page_addr <= 0
end
else
if(clk_div &&(state == wr_data_2))
if(page_done)//
begin
cs_r <= 2'b01
page_addr <= page_addr + 1'b1//一页写完时写下一页
end
else
if(left_done)
begin
cs_r <= 2'b10
end
//*********************************************************************
//********************************************************************
assign left_done = (cnt[5:0] == 6'd63) //写完左半屏数据64个
assign page_done = (cnt[6:0] == 7'd127) //写完一页数据128个
assign frame_done = (cnt[9:4] == 7'h3f) //写完一屏数据
//***********************************************************************
//*******************************************************************
//调用ROM(图片数据)
rom rom(.address(cnt+'d8),.clock(clock),.q(showdata))
endmodule
开发板例程 自己看吧
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
估计是oled驱动电压过低造成的,OLED像素袜宴点亮数量多的时候,电流让好首消耗加大。坦数检查你供给OLED的电压。晶奥科技提供2.4寸、2.7寸、3.5寸、4.7寸oled显示模组欢迎分享,转载请注明来源:内存溢出
评论列表(0条)