Matlab中为图片加噪声的语句是:
(1)J = imnoise(I,type)
(2)J = imnoise(I,type,parameters)
其中I为原图象的灰度矩阵,J为加噪声后图象的灰度矩阵
一般情况下用(1)中表示即可,(2)中表示是允许修改参数,而(1)中使用缺省参数
至于type可有五种,分别为'gaussian'(高斯白噪声),'localvar'(与图象灰度值有关的零均值高斯白噪声),'poisson'(泊松噪声),'salt &pepper'(椒盐噪声)和'speckle'(斑点噪声)具体(2)中参数值的设亮茄定可根据个人需要其余情况以及若还有不懂请参考Matlab帮助文件。
在此使用'salt &pepper'(椒盐噪声),并将其参数设置宏亏为0.6。其例子如下:
L = imread(‘image_ori.jpg’)
J = imnoise(L, ‘salt &pepper’, 0.6)
imshow(J)//立即d出窗口,显示加了噪声后的图片
imwrite(J, ‘image_noise.jpg’, ‘jpg’, ‘Quality’, 100)//按100%的质量存储加了噪声的敬绝察图片,Quality的默认值为75.
以上程序就表示把原图像加入椒盐噪声,但注意要把图像和以上程序的M文件放在同一个子目录下。
已知斑点配正噪声密裤卖段度为10^-3,如何matlab实现胡誉给图像加斑点噪声设原图像是I: nn = 0.5*randn(size(I))+10J = I.*nn加噪后的图是J
哈哈!傻眼了吧,理论和实际不可兼得啊!对于你这个问题有如下建议:
小波去噪的试验,十个有九个都喜欢用正、余弦函数,但由于小波函数的几何特征,其实不易得到满意效果,你只能选择线性强的小波基,即对称性强并且光滑的小波,嘿嘿,貌似能做DWT的所有小波基中只有sym8的对称性最强(参看http://zhidao.baidu.com/question/585223273699457565.html?from=pubpage&msgtype=2),这样你将会得到其降噪效果好于其它小波基的谬论,实际应用中如果原始信号本身特征就不规律对称则有可能其它小波基的处理效果会好于sym8,这需要试错的方法试验,是你这个原始信号对称的前提假设造成的,但不可认为sym8适合你这个特首兄世殊例子就得出结论,你这试验只适合你的假设,其实并不适合所有情形,个人认为其实不具说服力和可比性。如同我家钥匙开不了你家门,是不能得出我家钥匙不如你家钥匙的结论滴。
当你的噪声特征与信号的特征的频率相近时,小波也无能为力,它不是神,也一样分不出啥尘咐是噪声,所以其一是可增加分解层数,你这个信号只有100个数,5层已经很高了,再增大也没啥用了,可能会过多显示小波基的特征,造成扭曲失真(如果用SWT会好很者肢多,但需要自己编制函数);其二是参数SCAL可以改为伸缩的sln,而不是固定的one,这样分解层数和SCAL都将起作用,你可以试着改改玩,效果还行。
分解5层
分解8层
你可以试试只分解一层的状况,频率最低的几处噪声会保留下来哦!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)