用C#怎么写UART、SPI、I2C、CAN总线上测试时的数据程序?

用C#怎么写UART、SPI、I2C、CAN总线上测试时的数据程序?,第1张

针对 树莓派 封装的 UWP应用 类,以下代码未经测试,聊以抛砖引玉:

using System

using System.Collections.Generic

using System.Linq

using System.Text

using System.Threading.Tasks

using Windows.Devices.Gpio

using Windows.Storage.Streams

using Windows.Devices.Enumeration

using Windows.Devices.SerialCommunication

using Windows.Devices.I2c

using Windows.Devices.Spi

namespace SlotAgentApp.Services

{

public class DevicesHelper

{

public static void GPIO(int eLevel=0, int ioPortNumber = 5)

{

// 获得系统板载缺省GPIO controller

GpioController gpio = GpioController.GetDefault()

if (gpio == null)

return// 如果系瞎逗手统板载磨嫌无可用GPIO,则返回

// 打开指定的GPIO

using (GpioPin pin = gpio.OpenPin(ioPortNumber))

{

// Latch HIGH value first. This ensures a default value when the pin is set as output

pin.Write(eLevel==0? GpioPinValue.Low: GpioPinValue.High)

// 设置IO为输出方向

pin.SetDriveMode(GpioPinDriveMode.Output)

} //关闭 pin - will revert to its power-on state

}

#region 示例代码

/*

(一)GPIO接口使用

*/

public void GPIO()

{

// Get the default GPIO controller on the system

GpioController gpio = GpioController.GetDefault()

if (gpio == null)

return// GPIO not available on this system

// Open GPIO 5

using (GpioPin pin = gpio.OpenPin(5))

{

// Latch HIGH value first. This ensures a default value when the pin is set as output

pin.Write(GpioPinValue.High)

// Set the IO direction as output

pin.SetDriveMode(GpioPinDriveMode.Output)

} // Close pin - will revert to its power-on state

}

/*

(二)指带 UART接口

Pin 8 - UART0 TX

Pin 10- UART0 RX

下面的例子先是初始化UART0,然后做了一次读 *** 作和一次写 *** 作

*/

public async void Serial()

{

string aqs = SerialDevice.GetDeviceSelector("UART0") /* Find the selector string for the serial device */

var dis = await DeviceInformation.FindAllAsync(aqs) /* Find the serial device with our selector string */

SerialDevice SerialPort = await SerialDevice.FromIdAsync(dis[0].Id) /* Create an serial device with our selected device */

/* Configure serial settings */

SerialPort.WriteTimeout = TimeSpan.FromMilliseconds(1000)

SerialPort.ReadTimeout = TimeSpan.FromMilliseconds(1000)

SerialPort.BaudRate = 9600

SerialPort.Parity = SerialParity.None

SerialPort.StopBits = SerialStopBitCount.One

SerialPort.DataBits = 8

/* Write a string out over serial */

string txBuffer = "Hello Serial"

DataWriter dataWriter = new DataWriter()

dataWriter.WriteString(txBuffer)

uint bytesWritten = await SerialPort.OutputStream.WriteAsync(dataWriter.DetachBuffer())

/* Read data in from the serial port */

const uint maxReadLength = 1024

DataReader dataReader = new DataReader(SerialPort.InputStream)

uint bytesToRead = await dataReader.LoadAsync(maxReadLength)

string rxBuffer = dataReader.ReadString(bytesToRead)

}

/*

使用上面的例子时,需要在Package.appxmanifest 中修改下权限修改如下

<Capabilities>

<DeviceCapability Name="serialcommunication">

<Device Id="any">

<Function Type="name:serialPort" />

</Device>

</DeviceCapability>

</Capabilities>

*/

/*

(三)I2C 总线

Pin 3 - I2C1 SDA

Pin 5 - I2C1 SCL

下面的例子首先初始化I2C1 然后向地址为0x40的I2C设备写数据

*/

public async void I2C()

{

// Get a selector string for bus "I2C1"

string aqs = I2cDevice.GetDeviceSelector("I2C1")

// Find the I2C bus controller with our selector string

var dis = await DeviceInformation.FindAllAsync(aqs)

if (dis.Count == 0)

return// bus not found

// 0x40 is the I2C device address

var settings = new I2cConnectionSettings(0x40)

// Create an I2cDevice with our selected bus controller and I2C settings

using (I2cDevice device = await I2cDevice.FromIdAsync(dis[0].Id, settings))

{

byte[] writeBuf = { 0x01, 0x02, 0x03, 0x04 }

device.Write(writeBuf)

}

}

/*

(四) SPI 总线

Pin 19 - SPI0 MOSI

Pin 21 - SPI0 MISO

Pin 23 - SPI0 SCLK

Pin 24 - SPI0 CS0

Pin 26 - SPI0 CS1

下面的例子向SPI0 做了一次写 *** 作

*/

public async void SPI()

{

// Get a selector string for bus "SPI0"

string aqs = SpiDevice.GetDeviceSelector("SPI0")

// Find the SPI bus controller device with our selector string

var dis = await DeviceInformation.FindAllAsync(aqs)

if (dis.Count == 0)

return// "SPI0" not found on this system

// Use chip select line CS0

var settings = new SpiConnectionSettings(0)

// Create an SpiDevice with our bus controller and SPI settings

using (SpiDevice device = await SpiDevice.FromIdAsync(dis[0].Id, settings))

{

byte[] writeBuf = { 0x01, 0x02, 0x03, 0x04 }

device.Write(writeBuf)

}

}

#endregion

}

}

SPI

----串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口。Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI总线是一种三线同步总线,高埋因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。

can总线

它是总线的一种,与我们常见的USB总线属于一类概念,只不过CAN总线采用差分信号传输,有很强的错误检测能力,通信距离远,因此被用到一些特殊的场合,比如毁察汽车,厂矿等干扰较强的地方。

CAN总线是一种通信协议,是一种串行通信协议。

CAN总线是德国BOSCH公司从80年代戚余蚂初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1MBPS。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12418684.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存