a、前面提及了RSA加解密算法和DES加解密算法这两种加解密算法,由于随着计算机系统能力的不断发展,DES的安全性比它刚出现时会弱得多,追溯历史破解DES的案例层出不穷,一台实际的机器可以在数天内破解DES是让某些人相信他们不能依赖DES的安全性的唯一方法。而相对于DES,RSA的安全性则相对高些,虽然破解RSA的案例也有,但其所付出的代价是相对大的(相对DES),如今RSA的密钥也在升级,这说明破解RSA的难度也在增大。
b、在RSA加解密算法中提及到RSA加密明文会受密钥的长度限制,这就说明用RSA加密的话明文长度是有限制的,而在实际情况我们要进行加密的明文长度或许会大于密钥长度,这样一来我们就不得不舍去RSA加密了。对此,DES加密则没有此限制。
鉴于以上两点(个人观点),单独的使用DES或RSA加密可能没有办法满足实际需求,所以就采用了RSA和旅烂DES加密方法相结合的方式来实现数据的加密。
其实现方式即:
1、信息(明文)采用DES密钥加密。
2、使用RSA加密前面的DES密钥信息。
最终将混合信息进行传递。
而接收方接收到信息后:
1、用RSA解密DES密钥信息。
2、再用拆颂漏RSA解密获取到的密钥信息解密密文樱瞎信息。
最终就可以得到我们要的信息(明文)。
二、实现例子:
结合前面RSA和DES加密:
/// <summary>
/// RSA和DES混合加密
/// </summary>
/// <param name="data">待加密数据</param>
/// <param name="publicKey">RSA公钥</param>
/// <returns></returns>
public Param Encrypt(string data, string publicKey)
{
//加密数据
DESSecurity DES = new DESSecurity()
string DESKey = DES.GenerateKey()
string encryptData = DES.Encrypt(data, DESKey)
//加密DESkey
RSASecurity RSA = new RSASecurity()
string encryptDESKey = RSA.Encrypt(DESKey, publicKey)
Param mixParam = new Param()
mixParam.DESKey = encryptDESKey
mixParam.Data = encryptData
return mixParam
}
/// <summary>
/// RSA和DES混合解密
/// </summary>
/// <param name="data">待解密数据</param>
/// <param name="key">带解密的DESKey</param>
/// <param name="privateKey">RSA私钥</param>
/// <returns></returns>
public string Decrypt(string data, string key, string privateKey)
{
//解密DESKey
RSASecurity RSA = new RSASecurity()
string DESKey = RSA.Decrypt(key, privateKey)
//解密数据
DESSecurity DES = new DESSecurity()
return DES.Decrypt(data, DESKey)
DES是一种对称加密算法,所谓对称加密算法即:加密和解密使用相同密钥的算法。DES加密算法出自IBM的研究,
后来被美国政府正式采用,之后开始广泛流传,但是近些年使用越来越少,因为DES使用56位密钥,以现代计算能力,
24小时内即可被破解
调用过程
最近做微信小程序获取用户绑定的手机号信息解密,试了很多方法。最终虽然没有完全解决,但是也达到我的极限了。有时会报错:javax.crypto.BadPaddingException: pad block corrupted。
出现错误的详细描述
每次刚进入小程序登陆获取手机号时,会出现第一次解密失败,再试一次就成功的问题。如果连续登出,登入,就不会再出现揭秘失败的芦顷问题。但是如果停止 *** 作过一会,登出后登入,又会出现第一次揭秘失败,再试一次就成功的问题。
网上说的,官方文档上注意点我都排除了。获取的加密密文是在前端调取wx.login()方法后,调用我后端的微信授权接口,获取用户的sessionkey,openId.然后才是前端调用的获取sessionkey加密的用户手机号接口,所以我可以保证每次sessionkey是最新的。不会过期。
并且我通过日志发现在sessionkey不变的情况下,第一次失败,第二次解密成功。
加密算法,RSA是绕不开的话题,因为RSA算法是目前最流行的公开密钥算法,既能用于加密,也能用户数字签名。不仅在加密货币领域使用,在传统互联网领域的应用也很广泛。从被提出到现在20多年,经历了各种考验,被普遍认为是目前最优秀的公钥方案之一
非对称加密算法的特点就是加密秘钥和解密秘钥不同,秘钥分为公钥和私钥,用私钥加密的明文,只能用公钥解密;用公钥加密的明文,只能用私钥解密。
一、 什么是“素数”?
素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积
二、什么是“互质数”(或“互素数”)?
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如陪则陆果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。
三、什么是模指数运算?
指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
模指盯悉数运算就是先做指数运算,取其结果再做模运算。如(5^3) mod 7 = (125 mod 7) = 6。
其中,符号^表示数学上的指数运算;mod表示模运算,即相除取余数。具体算法步骤如下:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=p q。
(3)计算f(n)=(p-1) (q-1),同时对p, q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e作为公钥指数,且1<e<f(n)。
(5)计算私钥指数d,使得d满足(d*e) mod f(n) = 1
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:C=M^e mod n。
(8)解密过程为:M=C^d mod n。
在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:(d e) mod ((p-1) (q-1)) = 1,我们可以看出,密码破解的实质问题是:从p q的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。
当p和q是一个大素数的时候,从它们的积p q去分解因子p和q,这是一个公认的数学难题。比如当p*q大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
缺点1:虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。
在android 开发的很多时候。为了保证用户的账户的安全性,再保存用户的密码时,通常会采用MD5加密算法,这种算法是不可逆的,具有一定的安全性
MD5不是加密算法, 因为如果目的是加密,必须满足的一个条件是加密过后可以解密。但是MD5是无法从结果还原出原始数据的。
MD5只是一种哈希算法
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)