控制电路主要包括电流检测、位置估算、速度控制、性能控制、电流控制、SVPWM、PFC控制部分。
1.电流检测:电笑锋流检测在逆变桥的3个下桥臂与直流母线的负极之间串接水泥电阻来取样,该脉冲电流信号经放大滤波进入DSP的AD采样口采样,得到的三相电流经ABC-β坐标变换和αβ-dq坐标变换转换为id、iq供电流闭环控制和位置估算使用。
2.位置估算:位置估算是180°正弦波驱动的核心,只有得到正确的位置信息,直流压缩机才能得到良好控制。位置估算单元利用电流检测单元检测的电流和输出的电压,按照电机dq轴下的升配假定坐标系模型,构造一个模型电机,通过闭环控制,将模型电机的运转状态与实际电机运行状态一致,此时模型电机的位置就是对实际压缩机电机转子位置的估算位置。常用的位置估算方法有模型参考自适应位置估算方法、Kalman滤波方法、滑模观测器方法及状态反馈方法等。
3.转速控制:转速给定信号与转速观测器估算的转速进行比较,进入速度PI调节器,得到转矩电流iq给定信号,转矩电流经PI调节器后得到转矩电压;按照直轴电流给定为0,则电机的励磁完全由永磁体提供,如果要进行弱磁控制则将id的给定设置为一个小于0的数,转速经过PI调节器后生成电流is给定值。
4.性能控制:主要针对压缩机的实际应用要求,对压缩机的效率、出力、弱磁升速以及振动等进行控制。
5.电流控制:通过PI调节器完成d轴和q轴电流的闭环控制,输出d轴和q轴的给定电压。
6.SVPWM:按照电流控制输出的dq轴给定电压,经dq-αβ坐标变换转换到αβ的电压给定,然后采用SVPWM输出6路PWM脉冲驱动信号到主回路的IGBT。
7.PFC控制部分:通过检测环节检测输入电压、直流电压和输入电流。通过对PFC 开关VPFC 的控制来改善输入电流波形。VPFC
开通时,电流经电感L、整流桥BR2 和VPFC 后返回电源;关断时,储存在L 中的能量与电源串连后通过主整流桥BR1
给电容和负载供电。通过适当的控制,将谐波电流控制在标准限值以内。
同DC120°方波驱动相比较,直流压缩机正弦驱动的主要有点:针对反电动势为正弦波的压缩机,采用正弦驱动转矩脉动小;能充分利用压缩机的磁阻转矩,提供出力和效率;便于在直流电压降低的条件下,采用弱磁控制提高转速;压缩机电机电流波形为正弦,谐波含量少,能碰笑晌有效降低压缩机噪声。不足之处是控制复杂,运算量较大,一般要采用32位MCU或DSP才能实现压缩机的可靠驱动。
佛山市顺德区和而泰电子科技有限公司是深圳和而泰智能控制股份有限公司的控股子公司。专业从事变频空调控制技术的研究、开发、设计、制造与销售。打个广告,呵呵!
V/f控制就是保证输出电压跟频率成正比的控制这样可以使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生,多用于风机、泵类节能型变频器用压控振荡器实现 V-F控制的原理是产生一个震荡频率的电路叫做压控震荡器,是一个压敏电容,当受到一个变化的电压时候它的容量会变化,变化的电容引起震荡频率的变化,产生变频。把这个受控的频率用于控制输出电压的频率,使得受控的电机的转速变化。 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。FOC无传感器的矢量控制技术(磁场导向控制)FOC的基本控制原理是在三相定子侧流动的电流可以合成一个等效的合成电流向量,它的旋转角速度就是输入电源的角频率ω。透过座标转换技巧,可以将此电流向量映射到两轴旋转座标中。如果此两轴座标也同样以角速度ω旋转,则在此座标中电流向量可视为是静止的;换言之,电流向量在此座标中是直流量,既然是直流量,这样就可让马达转矩与电流成正比例关系,但还需要满足一些条件,包括马达的转子磁通必须与图中的d轴重合,而且电流向量的d轴分量必须维持为定值。满足以上的条件后,交流马达的转矩将与定子电流成正比,所以控制定子电流的向量值就可以像控制直流马达般的简易且精准。
直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实悔纳质是用空间矢量的分型搜析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。1985年德国鲁尔大学的狄普布洛克(M.Depenbrock)教授首先提出了基于六边形乃至圆形磁链轨迹的直接转矩控制理论,他称为Direct self-control——DSC。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。
直接转矩控制的特征是控制定子磁链,是直接在定子静止坐标系下,以空间矢量概念,通过检测到的定子电压、电流,直接在定子坐标系下计算与控制电动机的磁链和转矩,获得转矩的高动态性能。它不需要将交流电动机化成等效直流电动机,因而省去了矢量变换中的许多复杂计算,它也不需要模仿直流电动机的控制,从而也不需要为解耦而简化交流电动机的数学模型,而只需关心电磁转矩的大小,因此控制上对除定子电阻外的所有电机参数变化鲁棒性良好,所引入的定子磁链观测器能很容易得到磁链模型,并方便地估算出同步速度信息,同时也很容易得到转矩模型,磁链模型和转矩模型就构成了完整的电动机模型,因而能方便地实现无速度传感器控制,如果在系统中再设置转速调节器,即可进一步得到高性能动态转矩控制了。需要说明的是,直接转矩控制卜前历的逆变器采用不同的开关器件,控制方法也有所不同。
FOC。把先进的科技和设计完美结合起来,作为一个设计领域的先驱,专业为快速制造而设计产品。代表产品有FOC Palm-hug 吸顶灯FOC-Field Oriented Control,磁场定向控制。磁场定向控制系统(FOC)又称为矢量控制系统,他是选择电机某一旋转磁场轴作为特定的同步旋转坐标轴。磁场茄族定向轴的选择有三种:转子磁场定向、气隙磁场定向和定子磁场定向;气隙磁李做场定向和定子磁场定向在磁链关系中均存在耦合,使得矢量控制结构更加复杂;转子磁场定向是仿照直流电动机的控制方式,利用坐标变换的手段,把交流电动机的定子电流分解成磁场分量电流(相当于励磁电流)和转矩分量电流(相当于负载电流)并分别加以控制,即磁通电流分量和转矩电流分颤扰弊量二者完全解耦,从而获得类似于直流调速系统的动态性能。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)