clear all
close all % 清理工作空间
clear
[imA,map1] = imread('A.tif')
M1 = double(imA) / 256
[imB,map2] = imread('B.tif')
M2 = double(imB) / 256
zt= 4
wtype = 'haar'
%M1 - input image A
%M2 - input image B
%wtype使用的小波类型
%Y - fused image
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% 小波变换图像融合
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 小波变换的绝对值大的小波系数,对应着显著的亮度变化,也就是图像中的显著特征。所以,选择绝对值大
%% 的小波系数作为我们需要的小波系数。【注意,前面取的是绝对值大小,而不是实际数值大小】
%%
%% 低频部分系数采用二者求平均的方法
%%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[c0,s0] = wavedec2(M1, zt, wtype)%多尺度二维小波分解
[c1,s1] = wavedec2(M2, zt, wtype)%多尺度二维小波分解
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 后面就可以进行取大进行处理。然后进行重构,得到一个图像
%% 的小波系数,然后重构出总的图像效果袭羡。
%% 取绝对值大的小波系数,作为融合后的小波系数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
KK = size(c1)
Coef_Fusion = zeros(1,KK(2))
Temp = zeros(1,2)
Coef_Fusion(1:s1(1,1)) = (c0(1:s1(1,1))+c1(1:s1(1,1)))/2 %低频系数的处理
%这儿,连高频系数一起处理了,但是后面处理高频系闭禅银数的时候,会将结果覆盖,所以没有关系
%处理高频系数
MM1 = c0(s1(1,1)+1:KK(2))
MM2 = c1(s1(1,1)+1:KK(2))
mm = (abs(MM1)) >(abs(MM2))
Y = (mm.*MM1) + ((~mm).*MM2)
Coef_Fusion(s1(1,1)+1:KK(2)) = Y
%处理高频系数end
%重构
Y = waverec2(Coef_Fusion,s0,wtype)
%显示图像
subplot(2,2,1)imshow(M1)
colormap(gray)
title('input2')
axis square
subplot(2,2,2)imshow(M2)
colormap(gray)
title('input2')
axis square
subplot(223)imshow(Y,[])
colormap(gray)
title('融轿宴合图像')
axis square
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function lap_fusion()
%Laplacian Pyramid fusion
mul= imread('images\ms1.png')
pan= imread('images\pan.png')
figure(1)
imshow(mul)title('MS原始宴裂图像')axis fill
figure(2)
imshow(pan)title('Pan原始图像')axis fill
mul = double(rgb2gray(mul))/255
pan = double(rgb2gray(pan))/255
%普拉斯金塔变换参数
mp = 1zt =4cf =1ar = 1cc = [cf ar]
Y_lap = fuse_lap(mul,pan,zt,cc,mp)
figure(3)
imshow(Y_lap)title('lap fusion 后的图像')axis fill
imwrite(Y_lap,'images\lap fusion后的图像.jpg','Quality',100)
%main function end
function Y = fuse_lap(M1, M2, zt, ap, mp)
%Y = fuse_lap(M1, M2, zt, ap, mp) image fusion with laplacian pyramid
%
%M1 - input image A
%M2 - input image B
%zt - maximum decomposition level
%ap - coefficient selection highpass (see selc.m)
%mp - coefficient selection base image (see selb.m)
%
%Y - fused image
%(Oliver Rockinger 16.08.99)
% check inputs
[z1 s1] = size(M1)
[z2 s2] = size(M2)
if (z1 ~= z2) | (s1 ~= s2)
error('Input images are not of same size')
end
% define filter
w = [1 4 6 4 1] / 16
% cells for selected images
E = cell(1,zt)
% loop over decomposition depth ->analysis
for i1 = 1:zt
% calculate and store actual image size
[z s] = size(M1)
zl(i1) = zsl(i1) = s
% check if image expansion necessary
if (floor(z/2) ~= z/2), ew(1) = 1else, ew(1) = 0end
if (floor(s/2) ~= s/2), ew(2) = 1else, ew(2) = 0end
% perform expansion if necessary
if (any(ew))
M1 = adb(M1,ew)
M2 = adb(M2,ew)
end
% perform filtering
G1 = conv2(conv2(es2(M1,2), w, 'valid'),w', 'valid')
G2 = conv2(conv2(es2(M2,2), w, 'valid'),w', 'valid'友祥哗)
% decimate, undecimate and interpolate
M1T = conv2(conv2(es2(undec2(dec2(G1)), 2), 2*w, 'valid'),2*w', 'valid')
M2T = conv2(conv2(es2(undec2(dec2(G2)), 2), 2*w, 'valid'),2*w', '好行valid')
% select coefficients and store them
E(i1) = {selc(M1-M1T, M2-M2T, ap)}
% decimate
M1 = dec2(G1)
M2 = dec2(G2)
end
% select base coefficients of last decompostion stage
M1 = selb(M1,M2,mp)
% loop over decomposition depth ->synthesis
for i1 = zt:-1:1
% undecimate and interpolate
M1T = conv2(conv2(es2(undec2(M1), 2), 2*w, 'valid'), 2*w', 'valid')
% add coefficients
M1 = M1T + E{i1}
% select valid image region
M1 = M1(1:zl(i1),1:sl(i1))
end
% copy image
Y = M1
function Y = es2(X, n)
%Y = ES2(X, n) symmetric extension of a matrix on all borders
%
%X - input matrix
%n - number of rows/columns to extend
%
%Y - extended matrix
%(Oliver Rockinger 16.08.99)
[z s] = size(X)
Y= zeros(z+2*n, s+2*n)
Y(n+1:n+z,n:-1:1)= X(:,2:1:n+1)
Y(n+1:n+z,n+1:1:n+s) = X
Y(n+1:n+z,n+s+1:1:s+2*n) = X(:,s-1:-1:s-n)
Y(n:-1:1,n+1:s+n)= X(2:1:n+1,:)
Y(n+z+1:1:z+2*n,n+1:s+n) = X(z-1:-1:z-n,:)
function Y = dec2(X)
%Y = dec2(X) downsampling of a matrix by 2
%
%X - input matrix
%
%Y - output matrix
%(Oliver Rockinger 16.08.99)
[a b] = size(X)
Y = X(1:2:a, 1:2:b)
function Y = undec2(X)
%Y = undec2(X) upsampling of a matrix by 2
%
%X - input matrix
%
%Y - output matrix
%(Oliver Rockinger 16.08.99)
[z s] = size(X)
Y = zeros(2*z, 2*s)
Y(1:2:2*z,1:2:2*s) = X
function Y = selb(M1, M2, mp)
%Y = selb(M1, M2, mp) coefficient selection for base image
%
%M1 - coefficients A
%M2 - coefficients B
%mp - switch for selection type
% mp == 1: select A
% mp == 2: select B
% mp == 3: average A and B
%
%Y - combined coefficients
%(Oliver Rockinger 16.08.99)
switch (mp)
case 1, Y = M1
case 2, Y = M2
case 3, Y = (M1 + M2) / 2
otherwise, error('unknown option')
end
function Y = selc(M1, M2, ap)
%Y = selc(M1, M2, ap) coefficinet selection for highpass components
%
%M1 - coefficients A
%M2 - coefficients B
%mp - switch for selection type
% mp == 1: choose max(abs)
% mp == 2: salience / match measure with threshold == .75 (as proposed by Burt et al)
% mp == 3: choose max with consistency check (as proposed by Li et al)
% mp == 4: simple choose max
%
%Y - combined coefficients
%(Oliver Rockinger 16.08.99)
% check inputs
[z1 s1] = size(M1)
[z2 s2] = size(M2)
if (z1 ~= z2) | (s1 ~= s2)
error('Input images are not of same size')
end
% switch to method
switch(ap(1))
case 1,
% choose max(abs)
mm = (abs(M1)) >(abs(M2))
Y = (mm.*M1) + ((~mm).*M2)
case 2,
% Burts method
um = ap(2)th = .75
% compute salience
S1 = conv2(es2(M1.*M1, floor(um/2)), ones(um), 'valid')
S2 = conv2(es2(M2.*M2, floor(um/2)), ones(um), 'valid')
% compute match
MA = conv2(es2(M1.*M2, floor(um/2)), ones(um), 'valid')
MA = 2 * MA ./ (S1 + S2 + eps)
% selection
m1 = MA >thm2 = S1 >S2
w1 = (0.5 - 0.5*(1-MA) / (1-th))
Y = (~m1) .* ((m2.*M1) + ((~m2).*M2))
Y = Y + (m1 .* ((m2.*M1.*(1-w1))+((m2).*M2.*w1) + ((~m2).*M2.*(1-w1))+((~m2).*M1.*w1)))
case 3,
% Lis method
um = ap(2)
% first step
A1 = ordfilt2(abs(es2(M1, floor(um/2))), um*um, ones(um))
A2 = ordfilt2(abs(es2(M2, floor(um/2))), um*um, ones(um))
% second step
mm = (conv2((A1 >A2), ones(um), 'valid')) >floor(um*um/2)
Y = (mm.*M1) + ((~mm).*M2)
case 4,
% simple choose max
mm = M1 >M2
Y = (mm.*M1) + ((~mm).*M2)
otherwise,
error('unkown option')
end
我给你一个凳猜程序:load wbarb
X1=X
map1=map
subplot(2,2,1)
image(X1)colormap(map1)
title('original image wbarb')
load woman
X2=Xmap2=map
subplot(2,2,2)
image(X2)colormap(map2)
title('original image woman')
[c1,l1]=wavedec2(X1,2,'db3')
[c2,l2]=wavedec2(X2,2,'db3')
c=c1+c2 %fusing the two decomposition coefficients
XX=waverec2(c,l1,'db3'猛乱)
subplot(2,2,3)
image(XX)
title('fusing image I')
Csize1=size(c1)
for i=1:Csize1(2)
c1(i)=1.2*c1(i)
end
Csize2=size(c2)
for j=1:Csize1(2)
c2(i)=0.8*c2(j)
end
c=0.5*(c1+c2)
XXX=waverec2(c,l2,'db3')
subplot(2,2,4)
image(XXX)
title('枣知型fusing image II')
这个可以用,直接运行就好
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)