人脸识别系统通常包括几个过程:人脸图像采集及检测、关键点提取、人脸规整(图像处理)、人脸特征提取和人脸识别比对。
人脸图像采集。不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测。人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。
关键点提取(特征提取)。人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,漏旦也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
人脸规整(预处理)。对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言拦液,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸识别比对(匹配与识别)。提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。可分为1:1、1:N、属性识别。其中1:1是将2张人脸对应的特征值向量进行比对,1:N是将1张人脸照片的特征值向量和另外N张人脸对应的特征值向量进行比对,输出相似度最高或者相似度排名前X的人脸。
人脸识别是一种依据人的面部特征,自动进行身份识别的一种生物识别技术,通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。人脸识别利用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸图像进行一系列的相关应用 *** 作,技术上包括图像采集、特征定位、身份的确认和查找等等。
简单来说,就是从照片中提取人脸中的特征,比如眉毛高度、嘴角等等,再通过特征的对比输出结果。人脸识别的一般流程:
一、人脸采集:
不同的人脸图像通过摄像镜头采集得到,比如静态图像、动态图像、不同位置、不同表情等,当采集对象在设备的拍摄范围内时,采集设备会自动搜索并拍摄人脸图像。
人脸采集的主要影响因素:
图像大小
人脸图像过小会影响识别效果,人脸图像过大会影响识别速度,图像大小反映在实际应用场景就是人脸离摄像头的距离。
图像分辨率
越低的图像分辨率越难识别,图像大小综合图像分辨率,直接影响摄像头识别距离。
光照环境
过曝或过暗的光照环境都会影响人脸识别效果,可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。
模糊程度
实际场景主要着力解决运动模糊,人脸相对于摄像头的移动经常会产生运动模糊。部分摄像头有抗裂蚂模睁源携糊的功能,在成本有限的情况下,考虑通过算法模型优化此问题。
遮挡程度
五官无遮挡、脸部边缘清晰的图像为最佳,在实际场景中,很多人脸都会被帽子、眼镜、口罩等遮挡物遮挡,这部分数据需要根据算法要求决定是否留用训练。
采集角度
人脸相悉伏对于摄像头角度为正脸最佳,因此算法模型需训练包含左右侧人脸、上下侧人脸的数据
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)