(以下描述,均不是学术用语,仅供大家快乐的阅读)
灰狼算法(Grey Wolf Algorithm)是受灰狼群体捕猎行为启发而提出的算法。算法提出于2013年,仍是一个较新的算法。目前为止(2020)与之相关的论文也比较多,但多为算法的应用,应该仍有研究和改进的余地。
灰狼算法中,每只灰狼的位置代表了解空间中的一个可行解。群体中,占据最好位置的三只灰狼为狼王及其左右护法(卫)。在捕猎过程中这三只狼将带领着狼群蛇皮走位,抓捕猎物,直至找到猎物(最优解)。当然狼王不会一直是狼王,左右护法也是一样,每一轮走位后,会根据位置的优劣重新选出新的狼王和左右护法。狼群中的每一只灰狼会向着(也可能背向)这三只位置最优的灰狼移动一定的距离,来决定这一步自己将如何走位。简单来说, 灰狼个体会向则群体中最优的三个个体移动 。
很明显该算法的主角就是灰狼了。
设定目标灰狼为
,当前灰狼的为 ,则该灰狼向着目标灰狼移动后的位置 可以由一下公式计算得出:
灰狼群体中位置最好的三只灰狼编号为1,2,3,那么当前的灰狼i通过观察灰狼1、灰狼2和灰狼3,根据公式(1)得出的三个位置为Xi1,Xi2,Xi3。那么灰狼i将要移动到的位置可以根据以下供述计算得出:
可以看出该灰狼的目标位置是通过观察三只头狼得到的三个目标位置的所围成的区域的质心。(质心超出边界时,取值为边界值)。
灰狼算法的论文描述很多,但是其公式和流程都非常简单,主要对其参数A和C的作用效果进行了详细描述。
C主要决定了新位置相对于目标灰中逗狼的方位,而A则决定新位置向目标靠近还是远离目标灰狼。当|A|>=1时,为远离目标,表现出更强的全局搜索能力,|A|<1时靠近目标,表现出更强的局部搜索能力。
适应度函数 。
实验一:
看看这图像和结果,效果好极了。每当我这么认为时,总卖山卖会出现意想不到的转折。
修改一下最优解位置试一试, 。
实验二 : 。
其结果比上面的实验差了不少,但我觉得这才是一个优化算法应有的搜索图像。其结果看上去较差只是因为迭代次数较少,收敛不够迅速,这既是优点也是缺点,收敛慢但是搜索更细致。
仔细分析灰狼算法的流程,它并没有向原点靠近的趋势,那只能理解为算法群体总体上向着群体的中心移动。 猜想 :当初始化群体的中心恰好是正解时,算法的结果将会非常的好。
下面使用 ,并将灰狼的初始位置限定在(50,100)的范围内,看看实验图像是否和实验二的图像一致。
实验三 . ,初始种群取值范围为(50,100)
这图像和结果跟实验一的不是一样的吗?这说明从实验二中得出的猜想是错误的。
从图像和结果上看,都和实验二非常相似,当解在解空间的中心时但不在原点时,算法的结果将差一些。
为什么会这样呢?从唯掘算法的流程上看,灰狼算法的各个行为都是关于头狼对称的,当最优解在原点且头狼在附近时,公式(1)将变为如下:
实验五 . ,三只头狼添加贪心算法。
从图像可以看出中心的三个点移动的频率要比其他点的移动频率低。从结果上可以看出其结果相对稳定了不少,不过差距非常的小,几乎可以认为是运气好所导致。如果所有的个体都添加贪心算法呢?显然,算法的全局搜索能力将进一步减弱,并且更容易向群体中心收敛,这并不是一个好的 *** 作。
实验六 . ,
在实验五的基础上为狼群添加一个统一的步长,即每只狼每次向着目标狼移动的距离不能大于其步长,将其最大步长设为1,看看效果。
从图像可以看出,受到步长的约束每只狼的移动距离较小,在结束时还没有收敛,其搜索能力较强但收敛速度过慢且极易陷入局部最优。现在将最大步长设置为10(1/10解空间范围)使其搜索能力和收敛速度相对平衡,在看看效果。
从图像可以看出,算法的收敛速度快了不少,但从结果可知,相较于实验五,算法的提升并不太大。
不过这个图像有一种似曾相识的感觉,与萤火虫算法(FireFly Algorithm)差不多,仔细对比这两个算法可以发现, 灰狼算法相当于萤火虫算法的一个简化 。实验六种对灰狼算法添加步长的修改,让其离萤火虫算法更近了一步。
实验七 . ,
在实验六的基础上让最大步长随着迭代次数增加递减。
从实验七的图像可以看出,种群的收敛速度好像快了那么一点,结果也变好了不少。但是和改进后的萤火虫算法相比仍然有一定的差距。
灰狼算法在全局搜索和局部搜索上的平衡已经比较好了,尝试过对其进行改进,但是修改使搜索能力更强时,对于局部最优的函数求解效果很差,反之结果的精度较低,总体而言修改后的算法与原算法相差无几。
灰狼算法是根据灰狼群体的捕猎行动而提出的优化算法,其算法流程和步骤非常简单,数学模型也非常的优美。灰狼算法由于没有贪心算法,使得其有着较强的全局搜索能力同时参数A也控制了算法的局部搜索范围,算法的全局搜索能力和局部搜索能力比较平衡。
从算法的优化图像可以看出,灰狼算法和萤火虫算法非常的相似。可以认为,灰狼算法是对萤火虫算法的一种改进。萤火虫算法向着由于自己的个体飞行,而灰狼算法则的条件更为苛刻,向着群体前三强前进,萤火虫算法通过步长控制搜索范围,而灰狼算法则直接定义搜索范围参数A,并令A线性递减。
灰狼算法的结构简单,但也不容易改进,数次改进后只是改变了全局搜索能力和局部搜索能力的比例,综合能力并没有太大变化。
由于原点对于灰狼算法有着隐隐的吸引力,当测试函数目标值在原点时,其结果会异常的好。因此,灰狼算法的实际效果没有论文中的那么好,但也不差,算是一个中规中矩的优化算法。
参考文献
Mirjalili S , Mirjalili S M , Lewis A . Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. 提取码:wpff
以下指标纯属个人yy,仅供参考
目录
上一篇优化算法笔记(十七)万有引力算法
下一篇优化算法笔记(十九)头脑风暴算法
优化算法matlab实现(十八)灰狼算法matlab实现
(以下描述,均不是学术用语,仅供大家快乐的阅读)
万有引力算法(Gravitational Search Algorithm)是受物体之间的万有引力启发而提出的算法。算法提出于2008(2009)年,时间不长,不过相关的文章和应用已经相对较多,也有不少的优化改进方案。
万有引力算法中,每一个物体的位置代表了一个可行解,而物体的质量则反映了该位置的好坏,位置越好的物体的质量越大,反之物体的质量越小(质量由适应度值计算出,不是直接相等)。物体在解空间中的运动方式由其他物体的引力决定,质量越大的物体,在同等引力作用下的加速度较小,所以单位时间内的速度也相对较小,位移距离较短,反之加速度和速度都较大,位移距离较长。故可以简单的认为, 位置越优的个体的移动速度越慢,位置越差的个体的移动速度越快 。
万物之间皆有万有引力,不过在我们谈到万有引力之时,对象大多是天体,否则万有引力太小可伍慎慎以忽略不计。所有这次我们的主角就是天体了。(总不可能是苹果吧)。
每一个天体都有个属性:位置X,质量M,加速度A,以及速度V,还有适应度值F。
在D维空间内有N个天体,其位置为
,加速度
,速度
,其适应度值为
。
第i个天体的质量则是根据其适应度值计算得出:
其中M为天体的质量在群体重质量中的占比, 分别表示全局最差天体的适应度值和全局最优个体的适应度值。
可以看出,处于最优位置的天体的质量m为1,最差位置的天体的质量m为0。当最优天体和最差天体重合时,所有的天体的质量m都为1。
由万有引力计算公式和加速度公式可以计算出当前天体收到另一个天体万有引腔敬力而产生的加速度:
其中R表示第i个天体和第j个天体之间的欧式距离,aij为天体i在第d维上受到天体j的万有引力而产生的加速度,ai为第i个天体受到的其他所有天体万有引力的合力产生的加速度。G为万有引力常量,可以根据一下公式计算:
其中G0为初始值,T为最大迭代次数。
计算出了天体的加速度,则可以根据当前速度计算出下一步天体的运行速度以及天体下一步的位置。
这一步比较简单与粒子群、蝙蝠等有速度的算法一致。
可以看出万有引力算法的流程异常的简单,与经典的粒子群差不多。万有引力算法也可以看做是一个优化改进版的粒子群,不过设计比较巧妙,引入的质量、加速度等概念,但实现仍然很简单。万有引力算法的效果如何,在下一节将会进行实验测试。
适应度函数 。
实验一:
从图像中可以看出,各个天体都在不停的运动,由于没有贪心算法(优于当前值才改变位置)的加入,所以个天体有可能运动到比原先位置更差的地方,而且其收敛速度也比较快。
从结果上看,似乎还不错,受到最差值的影响均值也相对较大,算法结果的稳定性不是太好。
直觉上感觉算法有点问题。根据物理得来的直觉告诉我,这些天体会相互靠近,所以,它们不会集中到它们所构成的凸包之外, 凸实心物体的质心不会跑到该物体的外部 。做个试验验证一下,将测试函数的最优解设置到一个极端的位置。
实验二 : 适应度函数
这次最优解位置在(90,90)处,该点有很大概率出现在初始天体所围成的凸多边形外。
从图像中可以看出,在天体们还没有到达最优位置附近(右下角的红点)时,它们已经收敛于一个点,之后则很难再次向最优解靠经。看结果孝卜可以发现几乎每一次实验的结果都不太好,算法果然有点问题,不过问题不大。
万有引力出现这种现象可能有两个原因: 1.算法收敛的太快 ,还未对全局进行充分搜索之时就收敛到了一点,收敛到一点后无法再运到。 2.算法没有跳出局部最优的策略 ,万有引力作用下的天体慢慢聚集到奇点,形成黑洞,无法从中逃离。
那接下来,对万有引力算法的改进方向也比较明确了:1.减缓其收敛速度,2增加跳出局部最优 *** 作,使之逃离黑洞。
看看万有引力常量G的函数图像
将万有引力常量的值修改为随着迭代次数线性下降,从图像中可以看出,效果还是比较明显的,天体在不断的运动,最后才收敛、聚集于一起。从实验结果也可以看出,算法相对稳定。结合图像可以知道,改进后,算法的收敛性下降,但全局搜索能力有较大的提升,算法的结果不会很差但是精度较低。
将万有引力常量的下降趋势放缓为原来的1/4,从图像中可以看出,算法的收敛速度非常快,也得到了较好的结果,相比线性下降,算法有着更好的精度,不足之处则是没有跳出局部最优的 *** 作,收敛过快也容易陷入局部最优。
不知道原文为什么让万有引力常量G的如此快的降到0,明明降的更慢能有更好的全局搜索能力,但精度可能较差。猜测如果精度较差则在测试函数结果和曲线上比不赢对比的其他算法,论文没法发了。其使用的测试函数的最优解大多处于解空间的中心位置附近,即很少出现最优解在天体所围成的凸多面体之外的情况,而实际问题中我们是无法预知最优解在个位置的。
接下来,将试着为万有引力算法加入一点跳出局部最优的 *** 作。
实验四 :改进,新增以下规则及 *** 作
在实验二的条件下
1 .处于最优位置的天体保持自己的位置不动.
2 .如果某一个天体的运动后的位置优于当前全局最优个体的位置则将当前的最优个体初始化到解空间的随机位置.(将被自己干掉的大哥流放)。
3 .如果触发了规则2,将所有的个体的以迭代次数重置为0,即计算G=G0*e^(-20t/T)中的t置为0,重新计算万有引力常量,若未触发条件2则t=t+1。
从图像上看,算法的全局搜索能力有大幅的增强,并且已经集中到了最优解的附近,而且由于加入了“流放”这一跳出局部最优的 *** 作,可以看出,不断的有新的个体出现在距最优位置较远的位置。不过收敛速度有所下降,因此局部搜索能力有一定减弱。
看结果,好像没有实验三那么好,但与实验二相比,已经有了很大的提升,而且有了跳出局部最优的 *** 作,结果也相对稳定。
上述的实验仅仅是对直观猜想的实现,如果想以此为改进点,还要对其进行大量的调优,相信会有不错的结果。
万有引力算法根据万有引力提出,结合了牛顿第二定律,可以说其 *** 作步骤与真实的物理规律非常的贴切。不过就像前文说过,受物理现象启发而来的优化算法其性能是未知的,因为它们不具备智能,只有着规律,有规律就会存在弱点,就会有搜索盲区。宇宙那么大,肯定存在没有任何天体到达过的空间。
不过由于万有引力算法流程简单,理解方便,其优化方案和能改进的地方相对较多。万有引力算法的收敛速度过快,导致其全局搜索能力较弱而局部搜索能力很强,容易陷入局部最优。根据其特点,我们可以降低其收敛速度或者增加跳出局部最优 *** 作,来平衡算法的各个性能。
参考文献
Rashedi E , Nezamabadi-Pour H , Saryazdi S . GSA: A Gravitational Search Algorithm[J]. Information Sciences, 2009, 179(13):2232-2248. 提取码:xhpa
以下指标纯属个人yy,仅供参考
目录
上一篇优化算法笔记(十六)混合蛙跳算法
下一篇优化算法笔记(十八)灰狼算法
优化算法matlab实现(十七)万有引力算法matlab实现
@[toc]摘要:受 灰 狼 群 体 捕 食 行 为 的 启 发,Mirjalili等[1]于 2014年提出了一种新型群体智能优化算法:灰狼优化算法。GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。 GWO算法具有结构简单、需要调节的参数少,容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部乎衫寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。
灰狼属于犬科动物,被认为是顶级的掠食者,它们处于生物圈食物链的顶端。灰狼大多喜欢群居,每个群体中平均有5-12只狼。特别令人感兴趣的是,它们具有非常严格的社会等级层次制度,如图1所示。金字塔第一层为种群中的领导者,称为 α 。在狼群中 α 是具有管理能力的个体,主要负责关于狩猎、睡觉的时间和地方、食物分配等群体中各项决策的事务。金字塔第二层是 α 的智囊团队,称为 β 。 β 主要负责协助α 进行决策。当整个狼群的 α 出现空缺时,β 将接替 α 的位置。 β 在狼群中的支配权仅次于 α,它将 α 的命令下达给其他成员,并将其他成员的执行情况反馈给 α 起着桥梁的作用。金字塔第三层是 δ ,δ 听从 α 和 β 的决策命令,主要负责侦查、放哨、看护等事务。适应度不好的 α 和 β 也会降为 δ 。金字塔最底层是 ω ,主要负责种群内部关系的平衡。
<center>图1.灰狼的社会等级制度
此外,集体狩猎是灰狼的另一个迷人的社会行为。灰狼的社会等级在群体狩猎过程中发挥着重要的作用,捕食的过程在 α 的带领下完成。灰狼的狩猎包括以下 3个主要部分:
1)跟踪、追逐和接近猎物;
2)追捕、包围和汪态骚扰猎物,直到它停止移动;
3)攻击猎物
在狩猎过程中,将灰狼围捕猎物的行为定义如下:
式(1)表示个体与猎物间的距离,式(2)是灰狼的位置更新公式。其中, 是目前的迭代代数, 和 是系数向量, 和 分别是猎物的位置向量和灰狼的位置向量。 和 的计算公式如下:
其中, 是收敛因子,随着迭代次数从2线性减小到0, 和 的模取[0,1]之间的随机数。
灰狼能够识别猎物的位置并包围它们。当灰狼识别出猎物的位置后,β 和 δ 在 α 的带领下指导狼群包围猎物。在优化问题的决策空间中,我们对最佳解决方案(猎物的位置)并不了解。因此,为了模拟灰狼的狩猎行为岁陵腔,我们假设 α ,β 和 δ 更了解猎物的潜在位置。我们保存迄今为止取得的3个最优解决方案,并利用这三者的位置来判断猎物所在的位置,同时强迫其他灰狼个体(包括 ω )依据最优灰狼个体的位置来更新其位置,逐渐逼近猎物。狼群内个体跟踪猎物位置的机制如图2所示。
<center>图2.GWO 算法中灰狼位置更新示意图
灰狼个体跟踪猎物位置的数学模型描述如下:
其中, 分别表示分别表示 α , β 和 δ 与其他个体间的距离。 分别代表 α , β 和 δ 的当前位置; 是随机向量, 是当前灰狼的位置。
式(6)分别定义了狼群中 ω 个体朝向 α ,β 和 δ 前进的步长和方向,式(7)定义了 ω 的最终位置。
当猎物停止移动时,灰狼通过攻击来完成狩猎过程。为了模拟逼近猎物, 的值被逐渐减小,因此 的波动范围也随之减小。换句话说,在迭代过程中,当 的值从2线性下降到0时,其对应的 的值也在区间[-a,a]内变化。如图3a所示,当 的值位于区间内时,灰狼的下一位置可以位于其当前位置和猎物位置之间的任意位置。当 时,狼群向猎物发起攻击(陷入局部最优)。
灰狼根据 α ,β 和 δ 的位置来搜索猎物。灰狼在寻找猎物时彼此分开,然后聚集在一起攻击猎物。基于数学建模的散度,可以用 大于1 或小于-1 的随机值来迫使灰狼与猎物分离,这强调了勘探(探索)并允许 GWO 算法全局搜索最优解。如图3b所示, 强迫灰狼与猎物(局部最优)分离,希望找到更合适的猎物(全局最优)。GWO 算法还有另一个组件 来帮助发现新的解决方案。由式(4)可知, 是[0,2]之间的随机值。表示狼所在的位置对猎物影响的随机权重, 表示影响权重大,反之,表示影响权重小。这有助于 GWO算法更随机地表现并支持探索,同时可在优化过程中避免陷入局部最优。另外,与 不同 是非线性减小的。这样,从最初的迭代到最终的迭代中,它都提供了决策空间中的全局搜索。在算法陷入了局部最优并且不易跳出时, 的随机性在避免局部最优方面发挥了非常重要的作用,尤其是在最后需要获得全局最优解的迭代中。
<center>图4.算法流程图
[1] Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.
[2] 张晓凤,王秀英.灰狼优化算法研究综述[J].计算机科学,2019,46(03):30-38.
https://mianbaoduo.com/o/bread/Z5ecmZc=
文献复现:
文献复现:基于翻筋斗觅食策略的灰狼优化算法(DSFGWO)
[1]王正通,程凤芹,尤文,李双.基于翻筋斗觅食策略的灰狼优化算法[J/OL].计算机应用研究:1-5[2021-02-01]. https://doi.org/10.19734/j.issn.1001-3695.2020.04.0102 .
文献复现:基于透镜成像学习策略的灰狼优化算法(LIS-GWO)
[1]龙文,伍铁斌,唐明珠,徐明,蔡绍洪.基于透镜成像学习策略的灰狼优化算法[J].自动化学报,2020,46(10):2148-2164.
文献复现:一种优化局部搜索能力的灰狼算法(IGWO)
[1]王习涛.一种优化局部搜索能力的灰狼算法[J].计算机时代,2020(12):53-55.
文献复现:基于自适应头狼的灰狼优化算法(ALGWO)
[1]郭阳,张涛,胡玉蝶,杜航.基于自适应头狼的灰狼优化算法[J].成都大学学报(自然科学版),2020,39(01):60-63+73.
文献复现:基于自适应正态云模型的灰狼优化算法 (CGWO)
[1]张铸,饶盛华,张仕杰.基于自适应正态云模型的灰狼优化算法[J/OL].控制与决策:1-6[2021-02-08]. https://doi.org/10.13195/j.kzyjc.2020.0233 .
文献复现:改进非线性收敛因子灰狼优化算法
[1]王正通,尤文,李双.改进非线性收敛因子灰狼优化算法[J].长春工业大学学报,2020,41(02):122-127.
文献复现:一种基于收敛因子改进的灰狼优化算法
[1]邢燕祯,王东辉.一种基于收敛因子改进的灰狼优化算法[J].网络新媒体技术,2020,9(03):28-34.
文献复现:基于莱维飞行和随机游动策略的灰狼算法(GWOM )
[1]李阳,李维刚,赵云涛,刘翱.基于莱维飞行和随机游动策略的灰狼算法[J].计算机科学,2020,47(08):291-296.
文献复现:一种改进的灰狼优化算法(EGWO)
[1]龙文,蔡绍洪,焦建军,伍铁斌.一种改进的灰狼优化算法[J].电子学报,2019,47(01):169-175.
文献复现:改进收敛因子和比例权重的灰狼优化算法(CGWO)
[1]王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65+98.
文献复现:一种改进非线性收敛方式的灰狼优化算法研究(CGWO)
[1]谈发明,赵俊杰,王琪.一种改进非线性收敛方式的灰狼优化算法研究[J].微电子学与计算机,2019,36(05):89-95.
文献复现:一种基于Tent 映射的混合灰狼优化的改进算法(PSOGWO)
[1]滕志军,吕金玲,郭力文,许媛媛.一种基于Tent映射的混合灰狼优化的改进算法[J].哈尔滨工业大学学报,2018,50(11):40-49.
文献复现:基于差分进化与优胜劣汰策略的灰狼优化算法(IGWO)
[1]朱海波,张勇.基于差分进化与优胜劣汰策略的灰狼优化算法[J].南京理工大学学报,2018,42(06):678-686.
文献复现:基于 Iterative 映射和单纯形法的改进灰狼优化算法(SMIGWO)
[1]王梦娜,王秋萍,王晓峰.基于Iterative映射和单纯形法的改进灰狼优化算法[J].计算机应用,2018,38(S2):16-20+54.
文献复现:一种基于混合策略的灰狼优化算法(EPDGWO)
[1]牛家彬,王辉.一种基于混合策略的灰狼优化算法[J].齐齐哈尔大学学报(自然科学版),2018,34(01):16-19+32.
文献复现:基于随机收敛因子和差分变异的改进灰狼优化算法(IGWO)
[1]徐松金,龙文.基于随机收敛因子和差分变异的改进灰狼优化算法[J].科学技术与工程,2018,18(23):252-256.
文献复现:一种基于差分进化和灰狼算法的混合优化算法(DEGWO)
[1]金星,邵珠超,王盛慧.一种基于差分进化和灰狼算法的混合优化算法[J].科学技术与工程,2017,17(16):266-269.
文献复现:协调探索和开发能力的改进灰狼优化算法(IGWO)
[1]龙文,伍铁斌.协调探索和开发能力的改进灰狼优化算法[J].控制与决策,2017,32(10):1749-1757.
文献复现:基于Cat混沌与高斯变异的改进灰狼优化算法(IGWO)
[1]徐辰华,李成县,喻昕,黄清宝.基于Cat混沌与高斯变异的改进灰狼优化算法[J].计算机工程与应用,2017,53(04):1-9+50.
文献复现:具有自适应搜索策略的灰狼优化算法(SAGWO)
[1]魏政磊,赵辉,韩邦杰,孙楚,李牧东.具有自适应搜索策略的灰狼优化算法[J].计算机科学,2017,44(03):259-263.
文献复现:采用动态权重和概率扰动策略改进的灰狼优化算法(IGWO)
[1]陈闯,Ryad Chellali,邢尹.采用动态权重和概率扰动策略改进的灰狼优化算法[J].计算机应用,2017,37(12):3493-3497+3508.
文献复现:具有自适应调整策略的混沌灰狼优化算法(CLSGWO)
[1]张悦,孙惠香,魏政磊,韩博.具有自适应调整策略的混沌灰狼优化算法[J].计算机科学,2017,44(S2):119-122+159.
文献复现:强化狼群等级制度的灰狼优化算法(GWOSH)
[1]张新明,涂强,康强,程金凤.强化狼群等级制度的灰狼优化算法[J].数据采集与处理,2017,32(05):879-889.
文献复现:一种新型非线性收敛因子的灰狼优化算法(NGWO)
[1]王敏,唐明珠.一种新型非线性收敛因子的灰狼优化算法[J].计算机应用研究,2016,33(12):3648-3653.
文献复现:重选精英个体的非线性收敛灰狼优化算法(EGWO)
[1]黎素涵,叶春明.重选精英个体的非线性收敛灰狼优化算法[J].计算机工程与应用,2021,57(01):62-68.
https://mianbaoduo.com/o/bread/aZ2Wl54=
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)