两位数乘法
速算技巧原理:设两位数分别为10A B,10C D,其积为S,根据多项式展开:S=(10A B)×(10C D)=10A×10C B×10C 10A×D B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。注:下文中"--"代表十位和
个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零A乘法速算一前数相同的:11十位是1,个位互补,即A=C=1,B D=10,S=(10 B D)×10 A×B方法:百位为二,个位相乘,得数为后积,满十前一。例:13×17 13 7=2--("-"在不熟练的时候作为助记符,熟练后就可以不使用了)3×7=21---221即13×17=221 12十位是1,个位不互补,即A=C=1,B D≠10,S=(10 B D)×10 A×B方法:
乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。例:15×17 15 7=22-("-"在不熟练的时候作为助记符,熟练后就可以不使用了)5×7=35---255即15×17=255 13十位相同,个位互补,即A=C,B D=10,S=A×(A 1)×10 A×B方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56×54(5 1)×5=30--6×4=24--3024 14十位相同,个位不互补,即A=C,B D≠10,S=A×(A 1)×10 A×B方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67×64(6 1)×6=42 7×4=28 7 4=11 11-10=1 4228 60=4288--4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例:67×64 6×6=36--(4 7)×6=66-4×7=28--4288二、后数相同的:21个位是1,十位互补即B=D=1,A C=10 S=10A×10C 101方法:十位与十位相乘,得数为前积,加上101。--8×2=16--101---1701 22不是很简便个位是1,十位不互补即B=D=1,A C≠10 S=10A×10C 10C 10A 1方法:十位数乘积,加上十位数之和为前积,个位为1。例:71×91 70×90=63--70 90=16-1--6461 23个位是5,十位互补即B=D=5,A C=10 S=10A×10C 25方法:十位数乘积,加上十位数之和为前积,加上25。例:35×75 3×7 5=26--25--2625 24不是很简便个位是5,十位不互补即B=D=5,A C≠10 S=10A×10C 525方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例:75×95 7×9=63--(7 9)×5=80-25--7125 25个位相同,十位互补即B=D,A C=10 S=10A×10C B100 B2方法:十位与十位相乘加上个位,得数为前积,加上个位平方。例:86×26 8×2 6=22--36---2236 26个位相同,十位非互补方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然例:73×43 7×4 3=31 97 4=11 3109 30=3139---3139 27个位相同,十位非互补速算法2方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10例:73×43 7×4=28 92809 (7 4)×3×10=2809 11×30=2809 330=3139---3139三、特殊类型的:31、一因数数首尾相同,一因数十位与个位互补的两位数相乘。方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。例:66×37(3 1)×6=24--6×7=42--2442 32、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然例:38×44(3 1)4=12 84=32 1632 3 8=11 11-10=1 1632 40=1672--1672 33、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然例:46×75(4 1)7=35 65=30 5-7=-2 24=8 3530-80=3450--3450 34、一因数数首比尾小一,一因数十位与个手脑速算教程位相加等于9的两位数相乘。方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。例:56×36 10-6=4 3 1=4 54=20 44=16---2016 35、两因数数首不同,尾互补的两位数相乘。方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然例:74×56(7 1)5=40 46=24 7-5=2 26=12 1210=120 4024 120=4144---4144 36、两因数首尾差一,尾数互补的算法方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积例:24×36 32 33-1=8 6^2=36 100-36=64---864 37、近100的两位数算法方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一)例:93×91 100-91=9 93-9=84 100-93=7 79=63---8463 B、平方速算一、求11~19的平方同上12,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一例:17×17 17 7=24-7×7=49---289三、个位是5的两位数的平方同上13,十位加1乘以十位,在得数的后面接上25。例:35×35(3 1)×3=12--25--1225四、十位是5的两位数的平方同上25,个位加25,在得数的后面接上个位平方。例:53×53 25 3=28--3×3=9--2809四、21~50的两位数的平方求25~50之间的两数的平方时,记住1~25的平方就简单了,11~19参照第一条,下面四个数据要牢记:21×21=441 22×22=484 23×23=529 24×24=576求25~50的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。例:37×37 37-25=12--(50-37)^2=169--1369 C、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000…中减去某一数后所剩下的数。例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。D、除法速算一、某数除以5、25、125时1、被除数÷5=被除数÷(10÷2)=被除数÷10×2=被除数×2÷10 2、被除数÷25=被除数×4÷100=被除数×2×2÷100 3、被除数÷125=被除数×8÷1000=被除数×2×2×2÷1000在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法其它由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。这一套计算法,1990年由国家正式命名为"史丰收速算法",现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。史丰收速算法的主要特点如下:⊙从高位算起,由左至右⊙不用计算工具⊙不列计算程序⊙看见算式直接报出正确答案⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上速算法演练实例Example of Rapid Calculation in Practice○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需速算法26句口诀死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。□本文针对乘法举例说明○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。○乘积的每位数是由「本个加后进」和的个位数即--□本位积=(本个十后进)之和的个位数○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。(例题)被乘数首位前补0,列出算式:7536×2=15072乘数为2的进位规律是「2满5进1」7×2本个4,后位5,满5进1,4 1得5 5×2本个0,后位3不进,得0 3×2本个6,后位6,满5进1,6 1得7 6×2本个2,无后位,得2十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位
例:1617=
11=1
6+7=13 满十进1
67=42
1617=242十位数字相同,个位数字之和等于10 之类的两位数乘法速算规律:个位数字与个位数字相乘作个位十位,十位数字乘以十位数字加1作百位千位如:4446 =20 24
1十几乘十几:
口诀:头乘头,尾加尾,尾乘尾注:个位相乘,不够两位数要用0占位(1-3法相同)
2头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾
3第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾
4几十一乘几十一:
口诀:头乘头,头加头,尾乘尾
511乘任意数:
口诀:首尾不动下落,中间之和下拉“相同两位数相乘”的乘法。 例:18×18 =(18-8)×(18+8)+8×8 =10×26+64 =324 诀窍:两个相同的两位数相乘,等于从一个数抽调部分加到另一个数,然后两数相乘再加上抽调的数自己乘自己的积之和。数学快速乘法技巧方法如下:
1十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
511乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
评论列表(0条)