不可以。运放的调零通常是调整输入失调电压,有些低精度运放有专门用于此功能的引脚。消振通常是用加负反馈的方法。
这类带有调零管脚的运放通常都是低精度运放,不仅失调电压较大,失调电压的漂移也同样大,因此调零的效果很有限,即使把失调电压调小了,但很快就会因漂移而变大,所以最好还是选用那些精度高的运放而不依靠调零。
扩展资料:
注意事项:
电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。
推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。
对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好,就是成本高些。
参考资料来源:百度百科-集成运算放大器
运算放大器用做电压比较器时是否需要调零要看对精度的要求,如果被比较信号很微弱而所用运放的失调电压较大,就需要调零,但是最好用精度高的运放或比较器,因为凡是精度偏低的带有输入失调电压调整脚的运放,其失调电压漂移也较大,就算调了零,也会由于温漂、时漂等原因重新出现误差。直接利用失调电压的定义来测:正负输入端均接地,然后测量输出电压。该电压即为失调电压。电路接法参考国家标准GB3442-82,同时也应注意用补偿电容消除电路中的自激振荡。
使运算放大器输出端为0V(或接近0V)所需加于两输入端间之补偿电压。理想之运算放大器其VIO为0V,一般约为数毫伏。
如μA741C在25℃ 时其VIO最大值为6mV,LM318在25℃ 时其VIO最大值为10mV。VIO造成之原因为运放中差动放大级之VBE-IB特性不一致所致。
若是由FET所构成之差动放大器则是因VGS-ID特性不一致所造成,其值可为正值或负值。
扩展资料:
需要注意一个常见问题:替换不同型号的运放后,如果滑动端意外地与错误的电源相连,那么运放将会损坏。一个设计良好的运放的失调电压调节范围不超过其最低等级产品的最大Vos的2~3倍;然而,运放的失调电压调整管脚处的电压增益通常大于信号输入端的增益。
因此,必须尽可能地减小失调电压调整管脚处的噪声,也就是避免使用长导线连接运放和电位器。失调电压调零会引起失调温度系数上升,运放的输入失调电压漂移受失调电限调整设置的影响。
内部调节端只能用于调整运放自己的失调电压,而不能纠正系统的失调误差。对于FET输入型运放来说,漂移损失约为4μV/℃。通常,最好通过选择合适的器件/等级来控制失调电压。
参考资料来源:百度百科-失调电压
东南大学电工电子实验中心实验报告
学号: 姓名:
第 五 次
实验名称:模拟运算放大电路(一)
提交报告时间:2011年 05 月 01 日
完成名次:
成绩: 审批教师:2011年 月学习目标:
1、 了解运放调零和相位补偿的基本概念。
日
2、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。
3、 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。 实验原理
1、 运放“调零”,是指运放作直流放大器用时,由于输入失调电压和失调电流的影响,当运
放的输入为零时,输出不为零,这不仅影响运放的精度,严重时还会造成运放不能正常工作。调零一般是在运放的输人端外加一个补偿电压,抵消运放本身的失调电压,达到凋零的目的。有的运放有调零引出端如本实验用到的741,其调零电路如下图所示,调节电位器RW ,可使运放输出电压为零。也有的运放无调零引出端,需要在同相端或反相端接一定的补偿电压来实现。
图1 调零电路图
2、 用示波器测量电压传输特性曲线的方法
图2 电压传输特性曲线测量
示波器X-Y 方式进行直接观察,是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X 通道,电路的输出信号加到示波器的Y 通道,利用示波器X-Y 图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以测量相关参数。测量方法如图2所示。
具体测量步骤如下:
(1) 选择合理的输入信号的电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。
(2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察和读数。一般取50~500Hz 即可。
(3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC ,比较容易忽视的是在X-Y 方式下,X 通道的耦合方式是通过触发耦合按钮来设定的,同样也要设成DC 。
(4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就是X-Y 方式;对于数字示波器,按下“Display ”按钮,在菜单项中选择X-Y 。
(5) 进行原点校准,对于模拟示波器,可把两个通道都接地,此时应该能看到一个光点,调节相应位移旋钮,使光点处于坐标原点;对于数字示波器,先将CH1通道接地,此时显示一条竖线,调节相应位移旋钮,将其调到和Y 轴重合,然后将CH1改成直流耦合,CH2接地,此时显示一条水平线,调节相应位移旋钮,将其调到和X 轴重合。 3、 电压增益(电压放大倍数A V ) 测量方法
电压增益是电路的输出电压和输入电压的比值,包括直流电压增益和交流电压增益。实验中一般采用万用表的直流档测量直流电压增益,测量时要注意表笔的正负。
交流电压增益测量要在输出波形不失真的条件下,用交流毫伏表或示波器测量输入电压V i (有效值) 或V im (峰值) 或V ip-p (峰-峰值)与输出电压V o (有效值) 或V om (峰值) 或 V op-p (峰-峰值),再通过计算可得。测试框图如图所示,其中示波器起到了监视输出波形是否失真的
作用。
测电压增益(电压放大倍数A V )
预习思考:
1、 设计一个反相比例放大器,要求:|AV |=10,Ri>10KΩ,将设计过程记录在预习报告上; (1) 原理图
(2) 参数选择计算
由题意,要使|AV |=10,Ri>10KΩ,即R F /R 1=10, R 1>10 KΩ, 取R 1=15 KΩ,则R F =150 KΩ, R =R F //R 1≈136 K Ω
2、 设计一个同相比例放大器,要求:|AV |=11,Ri>100KΩ,将设计过程记录在预习报告上; (1)原理图
(2)参数选择计算
由题意,要使|AV |=11,Ri>100KΩ,
∴1+R F /R 1=11, R F /R 1=10 R i =R +R 2=R F //R 1+R 2=
1011
R 1+R 2>100k Ω
取R 1=110 KΩ,R 2=100 KΩ,R F =11MΩ,R =
1011
R 1=100 KΩ
3、 设计一个电路满足运算关系V O = -2Vi1 + 3Vi2 (1) 原理图
(2)参数选择计算
V 0=(1+
R F R 1
)
R 3R 2+R 3)
V i 2-
R F R 1
V i 1
上图为差分运算电路,输出
R F R 1
=2, (1+
R F R 1
R 3R 2+R 3
=3,
∴R 2=0
现要使V O = -2Vi1 + 3Vi2 即使
R F R 1
=2, (1+
R F R 1
)
R 3R 2+R 3
=3,
∴R 2=0,R 3可取任意值
取R 1=10 KΩ , R F =20 KΩ , R 3=20K Ω
必做实验:
1、 23页实验内容1,具体内容改为:
(I) 图5-1电路中电源电压±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ,R P =10k//100kΩ。
按图连接电路,输入直流信号V i 分别为-2V 、-05V 、05V 、2V ,用万用表测量对应不同V i 时的V o 值,列表计算A vf 并和理论值相比较。其中V i 通过电阻分压电
实验结果分析:
在输入V i 较小时,从表中数据可看出,运放的闭环电压放大倍数Avf 的测量值和理论值比较接近,误差在2%以内,而当增加V i 时,Avf 的测量值和理论值相差较大,达到了25%。
这是因为当(V +-V -) 较大时,Avf (V +-V -) >U O PP =V C C =15V, 故运放不再工作在理想线性区,此时放大倍数不再满足线性关系。
(II) Vi 输入02V 、 1kHz 的正弦交流信号,在双踪示波器上观察并记录输入输出波形,
在输出不失真的情况下测量交流电压增益,并和理论值相比较。注意此时不需要接电阻分压电路。
a ) 双踪显示输入输出波形图
b ) 交流反相放大电路实验测量数据
交流反相放大电路实验测量数据
实验结果分析:由实验结果波形看出,实验值和理论值几乎没有误差,说明器件性能良好。
(III) 输入信号频率为1kHz 的正弦交流信号,增加输入信号的幅度,测量最大不失真输
出电压值。
实验结果分析:
理论上,最大不失真输出电压值比电源电压小1~2V左右,从表中测得数据可看出,符合标准。
(IV) 用示波器X-Y 方式,测量电路的传输特性曲线,计算传输特性的斜率和转折点值。 a) 传输特性曲线图(请在图中标出斜率和转折点值)
b) 实验结果分析:
由公式知,电路输入信号最大不失真范围是V ip -p =op -p ≈(-15~15V )
|A vf |
和横坐标符合,转折点的纵坐标值也满足最大不失真的条件。 斜率即放大倍数,算得K =10和理论值10几乎没有误差。
(V) 电源电压改为12V ,重复(III)、(IV),并对实验结果结果进行分析比较。
V
b) 实验结果分析:
从表格和特性曲线可看出,改变电源电压后,最大不失真输出电压和输出电压范围也随之变化。
但输入信号仍然在工作范围之内,放大器的放大特性并没有变化。
2、
24页内容3-(2),设计电路满足运算关系V O = -2Vi1 + 3Vi2,其中方波信号从示波器的校
准信号获取,模拟示波器V i1为1KHz 、1V 的方波信号,数字示波器V i1为1KHz 、5V 的方波信号,画出波形图并与理论值比较。然后慢慢调整输入信号V i1 及V i2的幅值,观测运放反相端及同相端V -,V+的波形,了解“虚短”存在条件并作出解释。实验中如波形不稳定,可微调V i2的频率。 a ) 双踪显示输入输出波形图
用的是数字示波器,V i1为1KHz 、5V 的方波信号, V i 2为5KHz 、01V 的正弦信号。
b) 实验结果分析:
输入既有正弦波也有方波,放大器对方波正弦波均有放大作用,经叠加得到如图所示波形。 增大输入正弦信号幅值,则相应的输出正弦信号幅值增大。增大方波信号,则输出方波信号幅值增大。
虚短的概念:由于理想运放的开环差模电压增益为无穷大,当输出电压为有限值时,差模输入电压V --V +=0/A V =0, 即V -=V +。
当运算放大器是理想的深度负反馈放大器时,输出信号是有限值,此时满足虚短条件。V -, V +的波形一致。测量其反向端及同相端V -, V +的波形如下:
五:实验思考题
1、理想运放有哪些特点?
答:开环增益无限大;输入阻抗无限大;输出阻抗为零;开环带宽无限;
失调及其温漂为零;共模抑制比为无穷大;转换速率为无穷大。
2、运放用作模拟运算电路时,“虚短”“虚断”能永远满足吗?试问,在什么条件下“虚短”“虚断”将不再存在?
答: 不能永远满足。当放大器不是工作在线性区时,如输出端和反相端不存在负反馈,或者当A od ≠∞, (V +-V -) 值比较大,超出V C C 时,虚短,虚断现象不再满足。运算放大器为了输出稳定,一般都在输出端引一信号反馈到输入端,称为闭环,这样就有一小部分增益没有输出而是又返回了输入端,开环是指没有反馈的增益全部输出到了负载。
简单的电位器调零,一般没多大价值 1 低精度场合,没必要
2 高精度场合,由于电位器本身的稳定性问题,不能用
3 中精度场合,选个精度高的运放,比加个故障频发的电位器不强的多?
在现在的技术条件下,调零一般都应该与数字系统结合起来。能用软件修正的,就不要用硬件。 有了CPU/MCU,最关键的就不是失调,而是漂移,而解决漂移的最根本办法,还是选低漂移放大器。 一般单级增益500以上就会有明显干扰,所以单级不能过大
通常第一级用斩波自稳零放大器,放大10~20倍,第二级放大100倍以下,这时第2级调零。不太用三级以上的直流放大,因为即使有调零,漂移也会太大。如果放大倍数要求大于3000~5000倍,第一级处理要恰当,一般调零电路的漂移和热噪声都较大,第1级调零会引入干扰。最好根据设计先做个实验,要想一次性就成功是少见的
这里讨论需要达到的指标对多级运放调零问题的影响:
这里继续用低漂移运放OP07: 放大40mVDC热电偶信号到5VDC。若精度仅仅要求1%时,经过125倍放大后的零点失调约为25mV,造成的误差为: 25mV / 5000mV 100% = 05% 因此有可能不需要校正。
多级运放调零问题特别需要考虑3个问题: 需要视输入信号幅度/放大器的性能/需要达到的指标来考虑 或许有人认为没有关系,但是这样是错误的!
由于这里讨论的是直流信号放大问题,可以回避频率问题,简化讨论范围 这里先讨论放大器的性能对多级运放调零问题的影响:
低漂移运放OP07: 放大40mVDC热电偶信号到5VDC,这需要125倍。若取2级放大,前级取25倍,后级取5倍。由于前级电路的失调比后级电路的失调大25倍,因此可以简化问题,仅仅讨论前级失调对整个电路的影响。OP07D的失调电压约为02mV,经过125倍放大后约为25mV,因此仅仅在其中1级校正即可。
若换为普通的uA741/LM324,失调电压约为8mV,经过125倍放大后约为1000mV,因此需要逐级校正。
一、不考虑放大精度,就没有必要考虑失调,“多级运放调零问题”就没有意义了,请大家注意这一点。
二、在直流放大条件下
1、如果放大倍数<100,精度要求为01%,没有必要多级放大,选只性能好的运放就行,倒是电阻要仔细选择。
2、如果放大倍数>>100,单级放大受到开环增益、电阻噪声和地电流影响的限制,要考虑2级或更多级的放大,调零在第一级就行了。
三、使用运放做弱小信号(大信号一般没有必要大的增益,也就没有必要多级)直流放大的几个关键问题: 1、失调(电压/电流)温漂引起的误差
失调电压可以在某个温度下调整为零,但温度变了还要失调。 2、噪声引起的误差
这里主要包括器件噪声、反馈电阻噪声和干扰噪声。 器件噪声:
很低噪声的器件通常温漂很难做到很小,自稳零运放又很难做到低噪声,就看你自己的取舍。 反馈电阻噪声:
电阻一般取500欧-100k之间为好,电阻大了噪声大,电阻小了地电流引起的误差大,也看你自己的取舍。 干扰噪声:
这个问题涉及面太多,几句话说不清楚,须根据你所设计电路本身及应用的场合,还看你自己的取舍。 直流放大的设计与分析,基本上都可以归结到中学学过欧姆定律,比较好分析,就看你是否尽可能考虑到各种情况,特别要考虑信号源的特性和PCB布线,再说下去话就多了。
是的,每一级都要调零,在集成运放电路中,因电路工作都有个线性工作范围,假如第一级一电路工作点高了,当大信号时就会失真,那后面的电路工作都正常,但放大出来的信号已不是输入的信号了,这个电路还有用吗?所以每个都要调零。 总结一下:
直流信号放大时,多级运放调零级不能仅校正单级的情况: 1总失调电压超出单级的校正范围; 2单级的失调电压大到影响动态。输入失调电压VIO。
一个理想的运放,当输入电压为零时,输出电压也应为零(不加调零装置)。但实际上它的差分输入级很难做到完全对称,通常在输入电压为零时,存在一定的输出电压,该电压称为失调电压VIO。在室温(25℃)及标准电源电压下,输入电压为零时,为了使运放的输出电压为零,在输入端加的补偿电压即失调电压VIO。实际上指输入电压Vi=0时,输出电压Vo折合到输入端的电压的负值,Vio被等效成一个与运放反相输入端串联的电压源。必须对放大器的两个输入端施加差分电压,以产生0V输出。即
Vio=-(Vo│v=0)/Avo
Vio的大小反应了运放制造中电路的对称程度和电位配合情况。Vio值愈大,说明电路的对称程度愈差,一般约为±(1~10)mV。
Vio随着温度的变化而改变,这种现象称为漂移,漂移的大小随时间而变化。漂移的温度系数TCVio通常会在数据表中给出,但一些运放数据表仅提供可保证器件在工作温度范围内安全工作的第二大或者最大的Vio。这种规范的可信度稍差,因为TCVio可能是不恒定的,或者是非单调变化的。
Vio漂移或者老化通常以mV/月或者mV/1,000小时来定义。但这个非线性函数与器件已使用时间的平方根成正比。例如,老化速度1mV/1,000小时可转化为大约3mV/年,而不是9mV/年。老化速度并不总是在数据表中给出,即便是高精度运放。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)