频谱仪可以对信号实现检测,能得出信号频谱特性。那能否理解为频谱仪可以感知到信号是否存在?

频谱仪可以对信号实现检测,能得出信号频谱特性。那能否理解为频谱仪可以感知到信号是否存在?,第1张

感知信号,并测出瓶率,测出幅度,是频谱仪的基本功能。
频谱仪只是众多无线电仪器中的一种,是需要有无线电一定基础才能掌握的。
仅掌握频谱仪的技术,可能离掌握无线电技术还差很远。
感知和测量,是初级和高级的区别。

频谱仪测量的是信号在频域上的信息,示波器是时域上的。频谱仪把复杂波形转换成(傅里叶变化)更便于研究的频域信息,举个例子,如果示波器观察一个无限周期的正弦波,而在频谱仪上就是一条竖线(一个小脉冲)。而所有信号都可以由多个正弦波合成而来,借用频谱仪可以分析更复杂的信号类型,但示波器就只能看波形,也无法得知信号是由什么组合而来的,给个简单的例子,下面是给出一个10MHz和15MHz,幅值都是4V的叠加信号在示波器与频谱仪上的具体显示:第一个显示示波器的时域波形图,另一个频谱仪上显示频谱分析图,在频域分析中比较容易看出原信号是由俩个正弦波合成而来的。
现在很多示波器也有FFT功能,也能进行简单的频谱分析,但示波器的ADC位数没有频谱仪的高,进行频谱分析时底噪远比频谱仪的大,进行频域的分析时会有比较大的误差。
如果只是观察波形,那么示波器就够用了,需要更多的信号分析尤其是频域上的建议再买台频谱仪。

没有一种振荡器是绝对稳定的。虽然我们看不到频谱分析仪本振系统的实际频率抖动,但仍能观察到本振频率或相位不稳定性的明显表征,这就是相位噪声(有时也叫噪声边带)。

它们都在某种程度上受到随机噪声的频率或相位调制的影响。本振的任何不稳定性都会传递给由本振和输入信号所形成的混频分量,因此本振相位噪声的调制边带会出现在幅度远大于系统宽带底噪的那些频谱分量周围。显示的频谱分量和相位噪声之间的幅度差随本振稳定度而变化,本振越稳定,相位噪声越小。它也随分辨率带宽而变,若将分辨率带宽缩小 10 倍,显示相位噪声电平将减小 10 dB。

相位噪声频谱的形状与分析仪的设计,尤其是用来稳定本振的锁相环结构有关。在某些分析仪中,相位噪声在稳定环路的带宽中相对平坦,而在另一些分析仪中,相位噪声会随着信号的频偏而下降。相位噪声采用 dBc(相对于载波的 dB 数)为单位,并归一化至 1 Hz 噪声功率带宽。有时在特定的频偏上指定,或者用一条曲线来表示一个频偏范围内的相位噪声特性。

通常,我们只能在分辨率带宽较窄时观察到频谱仪的相位噪声,此时相位噪声使这些滤波器的响应曲线边缘变得模糊。使用前面介绍过的数字滤波器也不能改变这种效果。对于分辨率带宽较宽的滤波器,相位噪声被掩埋在滤波器响应曲线的边带之下,正如之前讨论过的两个非等幅正弦波的情况。

一些现代频谱仪或信号分析仪(例如是德科技 X 系列)允许用户选择不同的本振稳定度模式,使得在各种不同的测量环境下都能具备最佳的相位噪声。

在任何情况下,相位噪声都是频谱仪分辨不等幅信号能力的最终限制因素。如图所示,根据 3 dB 带宽和选择性理论,我们应该能够分辨出这两个信号,但结果是相位噪声掩盖了较小的信号。

频域测量与时域测量
示波器在时域测得近似方波的信号,经过傅里叶变换被分解为基波和高达11次奇次谐波。当用频谱分析仪从频域观察时。能够识别出所有频率组成。时域和频域是从不同角度对同一个信号的描述。
频谱分析仪的工作原理就像一个宽带接收机,宽带范围从几十kHz或几十MHz开始。接收机的功能是将输入信号的频率转换为检测回路能处理的频段。宽带接收机包括一个混频器、一个本机振荡器(LO)和一个带通滤波器。本机振荡器产生一个混频振荡信号。混频器将输入信号与本机振荡器产生的信号混合在一起,总信号就包括两种信号的和与差,两信号之差称为中频(IF),它是检测回路使用的部分信号。带通滤波器滤掉信号中不需要的成分,然后将仅留下的IF传到检测和显示单元。
频谱分析仪本质上是一个宽带接收机,因此需要不只一次的频率转换,次数由频率范围、频率分辨率和RBW滤波器决定。
1、衰减器
将衰减器置于射频输入路径,扩宽了输入信号电平的动态范围或对频谱分析仪增添了更多的输入保护。
衰减器将来自混频器(RF中部)的信号电平限制在一定范围内,如果输入信号超过参考电平,将会引起测量误差或伪噪声。这就是为什么某些频谱分析仪会在特定信号条件下列出仪器规格,包括混频器中具体的信号电平。
2、分辨率滤波器
当输入信号频率转换为更低频带并滤入检测和显示单元时,为了区分频率接近的信号,会用到RBW(分辨率带宽)滤波器。
在不同分辨率带宽下,RBW滤波器如何区分两种信号?将两个等幅信号通过两种RBW滤波器滤波,其中RBW1的分辨率优于RBW2,当通过较窄RBW1滤波器时,能清晰分辨出两种信号,但是通过较宽RBW2滤波器时,结果就不如RBW1。可以预测到,如果RBW2的分辨率带宽更宽,我们甚至会将结果误认为是一个信号。当两个信号的频率十分接近时,这种情况就会发生。另一种情况是,当两个信号的幅值差距很大,RBW1仍能够检测到较小信号,但是RBW2却不能,如下图所示,所以这些滤波器又称为分辨率滤波器。
3、检波器
RBW滤波之后,检波器能够检测能量并将其转换成直流电压。显示单元利用该直流电压描绘频谱分布。
4、视频滤波器
在直流电压进入显示单元之前,需要将检波器产生的噪声压缩,这个滤波器称为视频滤波器,它的带宽称为VBW。
视频滤波器也作为后置滤波器,VBW会对显示输出产生影响。如果待测信号通过两个VBW滤波器,其中VBW1小于VBW2,结果显示VBW2的底噪要比VBW1大,换句话说,视频滤波器将底噪平均了。但要注意的是,底噪电平并没有改变,VBW滤波器仅平均噪声电平,并不影响信号底噪的总体幅值。
5、扫描时间
上述内容介绍了频谱分析仪的基本结构,而且对RBW和VBW也作了详细解释。一般来说,扫描时间与频谱分析仪的频率分辨率成反比。扫描时间越快,解析度越低(RBW、VBW越宽);扫描时间越慢,解析度越高(RBW、VBW越窄)。因此如果选择较窄的RBW或VBW,显示信号的时间就会变长。这就意味着RBW和VBW越窄,扫描时间越长。对于RBW/VBW扫描时间,绝大多数频谱仪都具有自动和手动选择模式。自动模式权衡了频宽、RBW、VBW和扫描时间,通常能获取最好的结合。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12761519.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存