讨论二阶导数的正负,若在某区间为正则为凹区间,若在某区间为负则为凸区间。
一般地,把满足[f(x1)+f(x2)]/2>f[(x1+x2)/2]的区间称为函数f(x)的凹区间;反之为凸区间;凹凸性改变的点叫做拐点。
通常凹凸性由二阶导数确定:满足f''(x)>0的区间为f(x)的凹区间,反之为凸区间;
例:求y=x^3-x^4的凸凹区间和拐点。
解:y'=3x2-4x3,y''=6x-12x2;
y''>0,得:0<x<1/2;
所以,凹区间为(0,1/2);凸区间为(-∞,0),(1/2,+∞);拐点为(0,0),(1/2,1/16);
:函数的定义:
给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2),则称f为I上的凸函数。
若不等号严格成立,即“>”号成立,则称f(x)在I上是严格凸函数。如果">=“换成“<=”就是凹函数。类似也有严格凹函数。
设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2,那么称f(x)在D上的图形是(向上)凹的(或凹弧);
如果恒有f((a+b)/2)>(f(a)+f(b))/2,那么称f(x)在D上的图形是(向上)凸的(或凸弧)。
扩展资料:
确定曲线y=f(x)的凹凸区间和拐点的步骤:
1、确定函数y=f(x)的定义域;
2、求出在二阶导数f"(x);
3、求出使二阶导数为零的点和使二阶导数不存在的点;
4、判断或列表判断,确定出曲线凹凸区间和拐点。
参考资料来源:百度百科-函数的凹凸性
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)