传感器的测量通常包含噪声,以加速度测量为例,即使将传感器静止放置,测量出来的值也会在平均值上下波动,为了降低噪声,传感器内部通常会自带一个低通滤波器(LPF)来过滤高频分量,传感器的带宽就是指低通滤波器的带宽,高于带宽的信号变化将无法测量出来。
直观的说,带宽设置越小,测量到的数据曲线越平滑,但信号变化会越滞后,对于高于带宽的信号变化无法测到。相反,带宽设置越大,数据曲线的噪声越大,毛刺越多,但在测量数据变化的时候能够更加快速地响应其变化。
带宽的设置需根据实际测量的物体的实际变化快慢来定,在能够满足测量要求的情况下应尽量设置低的带宽,以获取更加平稳的测量数据,降低噪声,但需要高于需要测量的有效信号的变化频率。
例如用维特智能JY61模块测量农机执行机构角度,农机的执行机构角度变化是非常缓慢的,提升或降低大约需要5-10秒时间,而实际测量到的角度中还包含了发动机带来的震动,振动频率相对较高,一般大于10Hz,这种情况下,可以将带宽设置到最低5Hz,这样可以有效过滤掉发动机抖动带来的高频振荡信号,获得更加平滑的有效测量值。低通滤波器的中心频率就是零
对于不同滤波器而言,每个频率的信号的强弱程度不同。当使用在音频应用时,它有时被称为高频剪切滤波器,
或高音消除滤波器。
低通滤波器概念有许多不同的形式,其中包括电子线路(如音频设备中使用的hiss
滤波器)、平滑数据的数字算法、音障(acoustic
barriers)、图像模糊处理等等,这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。
你可以理解示波器带宽为一个窄门,这个门允许小于它的信号频率通过,这就是咱们学过的低通滤波器模型。你选示波器就要看被测信号的最大频率小于示波器带宽。
至于小多少,一般是五倍法则,但是根据实际应用也不一定,想了解可以来我们开放的培训学院学习。
另外这种低通滤波器也分为两种,高斯响应的带宽曲线和平坦响应曲线不同,相应的滤波特性和频率响应也有区别。对于阶跃信号来说高斯频响没有过冲,相同带宽下仪器上升时间最小。但其缺点是带内损耗大,带外抑制能力不够,信号频率接近带宽的话衰减很厉害。
一般建议带宽比被测信号大五倍以上。平坦响应的带内损耗小,带外抑制好,但是测阶跃信号容易产生吉布斯效应,也就是通常说的过冲。
1 点到点PCM多路电话通信原理脉冲编码调制(PCM)技术与增量调制(ΔM)技术已经在数字通信系统中得到广泛应用。当信道噪声比较小时一般用PCM,否则一般用ΔM。目前速率在155MB以下的准同步数字系列(PDH)中,国际上存在A解和μ律两种PCM编译码标准系列,在155MB以上的同步数字系列(SDH)中,将这两个系列统一起来,在同一个等级上两个系列的码速率相同。而ΔM在国际上无统一标准,但它在通信环境比较恶劣时显示了巨大的优越性。
点到点PCM多路电话通信原理可用图9-1表示。对于基带通信系统,广义信道包括传输媒质、收滤波器、发滤波器等。对于频带系统,广义信道包括传输媒质、调制器、解调器、发滤波器、收滤波器等。
本实验模块可以传输两路话音信号。采用TP3057编译器,它包括了图9-1中的收、发低通滤波器及PCM编译码器。编码器输入信号可以是本实验模块内部产生的正弦信号,也可以是外部信号源的正弦信号或电话信号。本实验模块中不含电话机和混合电路,广义信道是理想的,即将复接器输出的PCM信号直接送给分接器。
2 PCM编译码模块原理
本模块的原理方框图图9-2所示,电原理图如图9-3所示(见附录),模块内部使用+5V和-5V电压,其中-5V电压由-12V电源经7905变换得到。
图9-2 PCM编译码原理方框图
该模块上有以下测试点和输入点:
• BS PCM基群时钟信号(位同步信号)测试点
• SL0 PCM基群第0个时隙同步信号
• SLA 信号A的抽样信号及时隙同步信号测试点
• SLB 信号B的抽样信号及时隙同步信号测试点
• SRB 信号B译码输出信号测试点
• STA 输入到编码器A的信号测试点
• SRA 信号A译码输出信号测试点
• STB 输入到编码器B的信号测试点
• PCM PCM基群信号测试点
• PCM-A 信号A编码结果测试点
• PCM-B 信号B编码结果测试点
• STA-IN 外部音频信号A输入点
• STB-IN 外部音频信号B输入点
本模块上有三个开关K5、K6和K8,K5、K6用来选择两个编码器的输入信号,开关手柄处于左边(STA-IN、STB-IN)时选择外部信号、处于右边(STA-S、STB-S)时选择模块内部音频正弦信号。K8用来选择SLB信号为时隙同步信号SL1、SL2、SL5、SL7中的某一个。
图9-2各单元与电路板上元器件之间的对应关系如下:
•晶振 U75:非门74LS04;CRY1:4096KHz晶体
•分频器1 U78:A:U78:D:触发器74LS74;U79:计数器74LS193
•分频器2 U80:计数器74LS193;U78:B:U78:D:触发器74LS74
•抽样信号产生器 U81:单稳74LS123;U76:移位寄存器74LS164
•PCM编译码器A U82:PCM编译码集成电路TP3057(CD22357)
•PCM编译码器B U83:PCM编译码集成电路TP3057(CD22357)
•帧同步信号产生器 U77:8位数据产生器74HC151;U86:A:与门7408
•正弦信号源A U87:运放UA741
•正弦信号源B U88:运放UA741
•复接器 U85:或门74LS32
晶振、分频器1、分频器2及抽样信号(时隙同步信号)产生器构成一个定时器,为两个PCM编译码器提供2048MHz的时钟信号和8KHz的时隙同步信号。在实际通信系统中,译码器的时钟信号(即位同步信号)及时隙同步信号(即帧同步信号)应从接收到的数据流中提取,方法如实验五及实验六所述。此处将同步器产生的时钟信号及时隙同步信号直接送给译码器。
由于时钟频率为2048MHz,抽样信号频率为8KHz,故PCM-A及PCM-B的码速率都是2048MB,一帧中有32个时隙,其中1个时隙为PCM编码数据,另外31个时隙都是空时隙。
PCM信号码速率也是2048MB,一帧中的32个时隙中有29个是空时隙,第0时隙为帧同步码(×1110010)时隙,第2时隙为信号A的时隙,第1(或第5、或第7 —由开关K8控制)时隙为信号B的时隙。
本实验产生的PCM信号类似于PCM基群信号,但第16个时隙没有信令信号,第0时隙中的信号与PCM基群的第0时隙的信号也不完全相同。
由于两个PCM编译码器用同一个时钟信号,因而可以对它们进行同步复接(即不需要进行码速调整)。又由于两个编码器输出数据处于不同时隙,故可对PCM-A和PCM-B进行线或。本模块中用或门74LS32对PCM-A、PCM-B及帧同步信号进行复接。在译码之前,不需要对PCM进行分接处理,译码器的时隙同步信号实际上起到了对信号分路的作用。
3 TP3057简介
本模块的核心器件是A律PCM编译码集成电路TP3057,它是CMOS工艺制造的专用大规模集成电路,片内带有输出输入话路滤波器,其引脚及内部框图如图9-4、图9-5所示。引脚功能如下:
图9-4 TP3057引脚图
(1) V一 接-5V电源。
(2) GND 接地。
(3) VFRO 接收部分滤波器模拟信号输出端。
(4) V+ 接+5V电源。
(5) FSR 接收部分帧同信号输入端,此信号为8KHz脉冲序列。
(6) DR 接收部分PCM码流输入端。
(7) BCLKR/CLKSEL 接收部分位时钟(同步)信号输入端,此信号将PCM码流在FSR上升沿后逐位移入DR端。位时钟可以为64KHz到2048MHz的任意频率,或者输入逻辑“1”或“0”电平器以选择1536MHz、1544MHz或2048MHz用作同步模式的主时钟,此时发时钟信号BCLKX同时作为发时钟和收时钟。
(8) MCLKR/PDN 接收部分主时钟信号输入端,此信号频率必须为1536MHz、1544MHz或2048MHz。可以和MCLKX异步,但是同步工作时可达到最佳状态。当此端接低电平时,所有的内部定时信号都选择MCLKX信号,当此端接高电平时,器件处于省电状态。
(9) MCLKX 发送部分主时钟信号输入端,此信号频率必须为1536MHz、1544MHz或2048MHz。可以和MCLKR异步,但是同步工作时可达到最佳状态。
(10) BCLKX 发送部分位时钟输入端,此信号将PCM码流在FSX信号上升沿后逐位移出DX端,频率可以为64KHz到204MHz的任意频率,但必须与MCLKX同步。
图9-5 TP3057内部方框图
(11) DX 发送部分PCM码流三态门输出端。
(12) FSX 发送部分帧同步信号输入端,此信号为8KHz脉冲序列。
(13) TSX 漏极开路输出端,在编码时隙输出低电平。
(14) GSX 发送部分增益调整信号输入端。
(15) VFXi- 发送部分放大器反向输入端。
(16) VFXi+ 发送部分放大器正向输入端。
TP3057由发送和接收两部分组成,其功能简述如下。
发送部分:
包括可调增益放大器、抗混淆滤波器、低通滤波器、高通滤波器、压缩A/D转换器。抗混淆滤波器对采样频率提供30dB以上的衰减从而避免了任何片外滤波器的加入。低通滤波器是5阶的、时钟频率为128MHz。高通滤波器是3阶的、时钟频率为32KHz。高通滤波器的输出信号送给阶梯波产生器(采样频率为8KHz)。阶梯波产生器、逐次逼近寄存器(S•A•R)、比较器以及符号比特提取单元等4个部分共同组成一个压缩式A/D转换器。S•A•R输出的并行码经并/串转换后成PCM信号。参考信号源提供各种精确的基准电压,允许编码输入电压最大幅度为5VP-P。
发帧同步信号FSX为采样信号。每个采样脉冲都使编码器进行两项工作:在8比特位同步信号BCLKX的作用下,将采样值进行8位编码并存入逐次逼近寄存器;将前一采样值的编码结果通过输出端DX输出。在8比特位同步信号以后,DX端处于高阻状态。
接收部分:
包括扩张D/A转换器和低通滤波器。低通滤波器符合AT&T D3/D4标准和CCITT建议。D/A转换器由串/并变换、D/A寄存器组成、D/A阶梯波形成等部分构成。在收帧同步脉冲FSR上升沿及其之后的8个位同步脉冲BCLKR作用下,8比特PCM数据进入接收数据寄存器(即D/A寄存器),D/A阶梯波单元对8比特PCM数据进行D/A变换并保持变换后的信号形成阶梯波信号。此信号被送到时钟频率为128KHz的开关电容低通滤波器,此低通滤波器对阶梯波进行平滑滤波并对孔径失真(sinx)/x进行补尝。
在通信工程中,主要用动态范围和频率特性来说明PCM编译码器的性能。
动态范围的定义是译码器输出信噪比大于25dB时允许编码器输入信号幅度的变化范围。PCM编译码器的动态范围应大于图9-6所示的CCITT建议框架(样板值)。
当编码器输入信号幅度超过其动态范围时,出现过载噪声,故编码输入信号幅度过大时量化信噪比急剧下降。TP3057编译码系统不过载输入信号的最大幅度为5VP-P。
由于采用对数压扩技术,PCM编译码系统可以改善小信号的量化信噪比,TP3057采用A律13折线对信号进行压扩。当信号处于某一段落时,量化噪声不变(因在此段落内对信号进行均匀量化),因此在同一段落内量化信噪比随信号幅度减小而下降。13折线压扩特性曲线将正负信号各分为8段,第1段信号最小,第8段信号最大。当信号处于第一、二段时,量化噪声不随信号幅度变化,因此当信号太小时,量化信噪比会小于25dB,这就是动态范围的下限。TP3057编译码系统动态范围内的输入信号最小幅度约为0025Vp-p。
常用1KHz的正弦信号作为输入信号来测量PCM编译码器的动态范围。
图9-6 PCM编译码系统动态范围样板值
语音信号的抽样信号频率为8KHz,为了不发生频谱混叠,常将语音信号经截止频率为34KHz的低通滤波器处理后再进行A/D处理。语音信号的最低频率一般为300Hz。TP3057编码器的低通滤波器和高通滤波器决定了编译码系统的频率特性,当输入信号频率超过这两个滤波器的频率范围时,译码输出信号幅度迅速下降。这就是PCM编译码系统频率特性的含义。
四、实验步骤
1 熟悉PCM编译码单元工作原理,开关K9接通8KHz(置为1000状态),开关K8置为SL1(或SL5、SL7),开关K5、K6分别置于STA-S、STB-S端,接通实验箱电源。
2 用示波器观察STA、STB,调节电位器R19(对应STA)、R20(对应STB),使正弦信号STA、STB波形不失真(峰峰值小于5V)。
3 用示波器观察PCM编码输出信号。
示波器CH1接SL0,(调整示波器扫描周期以显示至少两个SL0脉冲,从而可以观察完整的一帧信号)CH2分别接SLA、PCM-A、SLB、PCM-B以及PCM,观察编码后的数据所处时隙位置与时隙同步信号的关系以及PCM信号的帧结构(注意:本实验的帧结构中有29个时隙是空时隙,SL0、SLA及SLB的脉冲宽度等于一个时隙宽度)。
开关K8分别接通SL1、SL2、SL5、SL7,观察PCM基群帧结构的变化情况。
4 用示波器观察PCM译码输出信号
示波器的CH1接STA,CH2接SRA,观察这两个信号波形是否相同(有相位差)。
5 用示波器定性观察PCM编译码器的动态范围。
开关K5置于STA-IN端,将低失真低频信号发生器输出的1KHz正弦信号从STA-IN输入到TP3057(U82)编码器。示波器的CH1接STA(编码输入),CH2接SRA(译码输出)。将信号幅度分别调至大于5VP-P、等于5VP-P,观察过载和满载时的译码输出波形。再将信号幅度分别衰减10dB、20dB、30dB、40dB、45dB、50dB,观察译码输出波形(当衰减45dB以上时,译码输出信号波形上叠加有较明显的噪声)。
也可以用本模块上的正弦信号源来观察PCM编译码系统的过载噪声(只要将STA-S或STB-S信号幅度调至5VP-P以上即可),但必须用专门的信号源才能较方便地观察到动态范围。通信界和计算机界对带宽的理解有所不同,通信界和电气相关,我们常说的第一零点带宽,信道带宽、信号带宽之类的词其实是频率轴的范围(单位是Hz),而计算机界说的带宽bandwidth其实是数据的传输速率,单位是bit/s。
一般用来描述两种对象,一个是信道(channel),另一个是信号(signal)。对于信道来说,又可分为两种,模拟信道和数字信道。对信号来说,也可分为两种,数字信号和模拟信号。模拟信号的带宽单位与模拟信道带宽相同。数字信号的带宽使用数字信号的传输速度来表示。数字信号一般传输速率是可变的。在传输数字信号时,可以用最大信号速率(峰值速率)、平均信号速率或最小信号速率来描述数字信号。
信道的带宽:对信道来说,带宽是衡量其通信能力的大小的指标。 对模拟信道,使用信道的频带宽度来衡量 。如果一个信道,其最低可传输频率为f1的信号,最高可传输频率为f2的信号,则该模拟信道的带宽是:模拟信道的带宽 = f2-f1 (f2 > f1)描述模拟信道带宽时,带宽的单位是Hz。模拟信号的带宽是指信号的波长或频率的范围,用于衡量一个信号的频率范围,单位是Hz(每秒钟电波的重复震动次数)。一般的电信号(模拟信号),都是由各种不同频率的电磁波所组成,对于这个电信号来说,其包含的电磁波的频率范围,称为这个电信号的带宽。比如人的声波信号,其绝大部分的能量,集中在300Hz ~ 3400Hz这个范围,因此我们称语音信号的带宽是31Khz(3400-300)。
对于数字信道的通信能力,使用信道的最大传输速率来衡量。 描述数字信道带宽时,带宽的单位是bps( bit per second) 。如果一个数字信道,其最大传输速率是100Mbps,我们称其带宽为100Mbps。
补充一下符号速率(也叫码元速率)和比特速率(也叫信息速率)的关系:(如下图)
首先对于一个矩形脉冲信号来说 ,在时域,每个门脉冲持续时间为τ。
那么我们看看它的频谱,由信号与系统的知识我们都知道时域的周期化对应于频域的离散化,所以它的频谱应该是一根根离散的谱线。(推导自己看傅里叶技术的知识推吧)
从上图中明显的看出,它的 第一零点带宽B(f)=w/2pi=1/τ ,也就是说 周期矩形信号其带宽(通常用的是第一零点带宽)等于其周期的倒数。
如果这是一个数字信息序列,即01010的信号,每个bit信息的宽度τ被称为码元周期或码元宽度(这里用二进制,所以1个码元等于1个bit)。其 信息速率Rb(或bit率)=1/τ ,即每秒中发送的bit信息。
那么带宽B和信息速率是不是相等了呢?对,没看到他们都等于1/τ吗,两者在数值上是相等的,即 ,带宽B的单位是Hz,Rb的单位是bit/s。
所以,数字 信号的带宽 一般用每bit占用的时间间隔的倒数来近似表示,传输速率的单位是bit/s,我们可以近似的认为传输速率=传输信号的带宽。这里只是近似的说法,具体信号的带宽要用函数估计,或用频谱仪测量,这和模拟信号是一样的。
注:以上说的是 信号带宽 。
基带传输 :樊昌信老师的通信原理书上(第7版)专门有一章讲基带传输的问题,最后得出的结论是: 按照能消除码间串扰的奈奎斯特速率传输基带信号时,所需的最小带宽为 (Hz)。 理想低通传输特性的带宽为 (Hz),将此带宽称为奈奎斯特带宽。但该理想的低通特性在物理上无法实现(时域h(t)非因果),将它的冲激响应h(t)作为传输波形不合适。为了解决这一问题,我们可以使理想低通滤波器的边沿缓慢下降,即余弦特性滚降,滚降使带宽增大为 ( )。
那么上述带宽是什么带宽呢?(信号or信道的)。书上在图中画的是 H(w)的带宽,即理想低通滤波器的带宽,滤波器也即信道,所以是 信道带宽 。书中第142和144页画出了数字基带信号的传输系统模型,基带系统总的传输特性 =发送滤波器的传输特性 信道的传输特性 接收滤波器传输特性 。原始信号 经过传输系统后,在频域为 ,见书的图6-9(P144)。
信号的带宽为 ,经过滤波器(滤波器或信道的带宽为 )后频带会被压缩。当 =0时,滤波器为理想低通(带宽 ),和信号在频域相乘得到的带宽为 (虽然此时信号的带宽被截掉了一半,但仍然能恢复出信号原来的信息,注:信号原来带宽为B=RB,现在经过滤波器后为RB/2);当 =1时,滤波器和信号在频域相乘得到的带宽为 。
在 频带传输: 即对于 已调信号传输 时,滤波器信道带宽为基带传输的两倍,即 ,其中α是低通滤波器的滚降系数,当它的取值为0时,它的矩型系数最好, 占用的带宽最小( ,理想时 ),但很难实现;当它的取值为1时,带外特性呈平坦特性,占用的带宽最大是为0时的两倍 (即 ) 。例如,在数字电视系统,当α=016时,一个模拟频道的带宽为8M,则Rs=8/(1+016)=6896Mbps,如果采用64QAM调制方式Rb=6896log2(64) =41376Mbps。
注:以上说的是 信道带宽 。
对比一下:在基带 ,信号带宽 ,发送滤波器(信道带宽)带宽(理想低通) ,两者在频域相乘得到的带宽为 。 在频带 ,信号带宽 发送滤波器(信道带宽)为 ,两者在频域相乘得到的带宽为 。
推导:假设码元的平均信号能量为 ,码元周期为 ,则码速率为 ,因此信号的平均功率为 。对于2进制, ,所以 。当接收机带通滤波器的带宽为 时,接收到的噪声功率 ,所以信噪比 。这里 为频带利用率。
按照能消除码间串扰的奈奎斯特速率传输基带信号时,所需的最小带宽为 (Hz)。对于已调信号(频带),若采用的是2ASK或2PSK信号,则其占用的带宽是基带信号的两倍,即 (则上式子 )。(这里的 B是滤波器信道带宽 )。所以在工程上,信噪比 相当于码元能量和噪声功率谱密度之比。
实际接收机信噪比为 ,最佳接收机信噪比为 ,实际接收机带通滤波器带宽 , , 误码率 ,因此在相同输入条件下,实际接收机的性能总是低于最佳接收机的性能。
载波频率越高,带宽越大。
数字通信的带宽表征为:bit的 传输速率 ,
而载频频率,决定了一个时刻内传输的比特流,比如1Hz的载频1s只做一次变化,而bit是靠什么来表征信息的?是靠代表0,1两种不同的电平的不同的排列方式表征的,1hz最多1S传输2bit流,而1Mhz明显的要多多了。所以射频的频率高,一个时间段内传输的bit流多,当然每个bit得到的时间就很短暂,对接收设备的处理能力是有要求的。
或者这样理解载频频率,决定了单位时刻内传输的波形个数,比如1HZ的载频每秒传输一个波形,10hz 每秒传输10个周期波形,所以射频的频率高,一个时间段内传输的波形周期越多,基带信息靠加载到载波波形传输,本来 1比特用1个波形周期传输,现在有十个波形周期,那么就可以传输10个比特,比特速率变大,那么带宽也变大。首先探头带宽和示波器带宽单纯以参数来说,是没有关系的,但是在选择示波器和探头的时候不得不以示波器的带宽考虑该选什么带宽的探头,探头的带宽必须大于示波器方能发挥示波器的带宽,否则信号在经过探头后就被衰减了,示波器贷款再高也测试不到。
信号速率其实有俩个方面,第一个是上升沿,第二个也是带宽,信号的带宽根据测试的要求对示波器的需求不一样,正常测试的时候示波器带宽要留有30%的余量。而上升沿快的信号就要考虑示波器的上升时间问题,和带宽一样要留余量,一般50%或者更高,因为要测上升时间的客户对于结果要求就比较高了滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。
广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。
本节所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。 带通滤波器
二、滤波器分类
⒈根据滤波器的选频作用分类
⑴ 低通滤波器
从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。
⑵ 高通滤波器
与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。
⑶ 带通滤波器
它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。
⑷ 带阻滤波器
与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。
低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。
低通滤波器与高通滤波器的串联
低通滤波器与高通滤波器的并联
⒉ 根据“最佳逼近特性”标准分类
⑴ 巴特沃斯滤波器
从幅频特性提出要求,而不考虑相频特性。巴特沃斯滤波器具有最大平坦幅度特性,其幅频响应表达式为:
⑵ 切比雪夫滤波器
切贝雪夫滤波器也是从幅频特性方面提出逼近要求的,其幅频响应表达式为:
ε是决定通带波纹大小的系数,波纹的产生是由于实际滤波网络中含有电抗元件;Tn是第一类切贝雪夫多项式。
与巴特沃斯逼近特性相比较,这种特性虽然在通带内有起伏,但对同样的n值在进入阻带以后衰减更陡峭,更接近理想情况。ε值越小,通带起伏越小,截止频率点衰减的分贝值也越小,但进入阻带后衰减特性变化缓慢。切贝雪夫滤波器与巴特沃斯滤波器进行比较,切贝雪夫滤波器的通带有波纹,过渡带轻陡直,因此,在不允许通带内有纹波的情况下,巴特沃斯型更可取;从相频响应来看,巴特沃斯型要优于切贝雪夫型,通过上面二图比较可以看出,前者的相频响应更接近于直线。
⑶ 贝塞尔滤波器
只满足相频特性而不关心幅频特性。贝塞尔滤波器又称最平时延或恒时延滤波器。其相移和频率成正比,即为一线性关系。但是由于它的幅频特性欠佳,而往往限制了它的应用。
二、理想滤波器
理想滤波器是指能使通带内信号的幅值和相位都不失真,阻带内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。也就是说,理想滤波器在通带内的幅频特性应为常数,相频特性的斜率为常值;在通带外的幅频特性应为零。
理想低通滤波器的频率响应函数为:
其幅频及相频特性曲线为:
分析上式所表示的频率特性可知,该滤波器在时域内的脉冲响应函数 h(t)为 sinc函数,图形如下图所示。脉冲响应的波形沿横坐标左、右无限延伸,从图中可以看出,在t=0时刻单位脉冲输入滤波器之前,即在t<0时,滤波器就已经有响应了。显然,这是一种非因果关系,在物理上是不能实现的。这说明在截止频率处呈现直角锐变的幅频特性,或者说在频域内用矩形窗函数描述的理想滤波器是不可能存在的。实际滤波器的频域图形不会在某个频率上完全截止,而会逐渐衰减并延伸到∞。
三、实际滤波器
⒈ 实际滤波器的基本参数
理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。
如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。
⑴ 纹波幅度d
在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。
⑵ 截止频率fc
幅频特性值等于0707A0所对应的频率称为滤波器的截止频率。以A0为参考值,0707A0对应于-3dB点,即相对于A0衰减3dB。若以信号的幅值平方表示信号功率,则所对应的点正好是半功率点。
⑶ 带宽B和品质因数Q值
上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0( )和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。
⑷ 倍频程选择性W
在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带的幅频曲线倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量
或
倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。
⑸ 滤波器因数(或矩形系数)
滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性,记作 ,即
理想滤波器 =1,常用滤波器 =1-5,显然, 越接近于1,滤波器选择性越好。
四、RC无源滤波器
在测试系统中,常用RC滤波器。因为在这一领域中,信号频率相对来说不高。而RC滤波器电路简单,抗干扰性强,有较好的低频性能,并且选用标准的阻容元件,所以在工程测试的领域中最经常用到的滤波器是RC滤波器。
⒈ 一阶RC低通滤波器
RC低通滤波器的电路及其幅频、相频特性如下图所示
设滤波器的输入电压为ex,输出电压为ey,电路的微分方程为
这是一个典型的一阶系统。令 =RC,称为时间常数,对上式取拉氏变换,有
或
其幅频、相频特性公式为:
分析可知,当f很小时,A(f)=1,信号不受衰减地通过;当f很大时,A(f)=0,信号完全被阻挡,不能通过。低通滤波器的上载止频率
⒉ 一阶RC高通滤波器
RC高通滤波器的电路及其幅频、相频特性如下图所示
设滤波器的输入电压为ex输出电压为ey,电路的微分方程为 :
同理,令 =RC,对上式取拉氏变换,有:
或
其幅频、相频特性公式为:
分析可知,当f很小时,A(f)=0,信号完全被阻挡,不能通过;当f很大时,A(f)=1,信号不受衰减的通过。
⒊ RC带通滤波器
带通滤波器可以看作为低通滤波器和高通滤波器的串联,其电路及其幅频、相频特性如下图所示。
其幅频、相频特性公式为 :
式中H1(s)为高通滤波器的传递函数,H2(s)为低通滤波器的传递函数。有:
这时极低和极高的频率成分都完全被阻挡,不能通过;只有位于频率通带内的信号频率成分能通过。
下截止频率:
上截止频率:
应注意,当高、低通两级串联时,应消除两级耦合时的相互影响,因为后一级成为前一级的“负载”,而前一级又是后一级的信号源内阻。实际上两级间常用射极输出器或者用运算放大器进行隔离。所以实际的带通滤波器常常是有源的。有源滤波器由RC调谐网络和运算放大器组成。运算放大器既可起级间隔离作用,又可起信号幅值的放大作用。
五、模拟滤波器的应用
模拟滤波器在测试系统或专用仪器仪表中是一种常用的变换装置。例如带通滤波器用作频谱分析仪中的选频装置;低通滤波器用作数字信号分析系统中的抗频混滤波;高通滤波器被用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的陷波器等。
用于频谱分析装置中的带通滤波器,可根据中心频率与带宽之间的数值关系,分为两种
一种是带宽B不随中心频率而变化,称为恒带宽带通滤波器,如图所示,其中心频率处在任何频段上时,带宽都相同;
另一种是带宽B与中心频率的比值是不变的,称为恒带宽比带通滤波器,如图所示,其中心频率越高,带宽也越宽。
一般情况下,为使滤波器在任意频段都有良好的频率分辨力,可采用恒带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率分辨力越高,但这时为覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多时候,恒带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化。在做信号频谱分析的过程中,参考信号是由可作频率扫描的信号发生器供给的。这种可变中心频率的恒带宽带通滤波器被用于相关滤波和扫描跟踪滤波中。
恒带宽比带通滤波器被用于倍频程频谱分析仪中,这是一种具有不同中心频率的滤波器组,为使各个带通滤波器组合起来后能覆盖整个要分析的信号频率范围,其中心频率与带宽是按一定规律配置的。
假若任一个带通滤波器的下截止频率为fc1,上截止频率为fc2,令fc1与fc2之间的关系为:
fc1=2nfc1
式中n值称为倍频程数,若n=1,称为倍频程滤波器;n=1/3,则称为1/3倍频程滤波器。滤波器的中心频率f0取为几何平均值,即:
根据上述两式,可以得:
则滤波器带宽:
如果用滤波器的品质因数Q值来表示,则有:
故倍频程滤波器,若n=l,则Q=141;若n=1/3,则Q=438;若n=1/5,则Q=72。倍频数n值越小,则Q值越大,表明滤波器分辨力越高。根据上述关系,就可确定出常用倍频程滤波器的中心频率f0和带宽B值。
为了使被分析信号的频率成分不致丢失,带通滤波器组的中心频率是倍频程关系,同时带宽又需是邻接式的,通常的做法是使前一个滤波器的一3dB上截止频率与后一个滤波器的一3dB下截止频率相一致
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)