0xC0000000到0xFFFFFFFF)供内核使用,称为“内核空间”。而较低的3G字节(从虚地址0x00000000到
0xBFFFFFFF),供各个进程使用,称为“用户空间”。因为每个进程可以通过系统调用进入内核,因此,Linux内核空间由系统内的所有进程共享。
于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟地址空间(也叫虚拟内存).
每个进程有各自的私有用户空间(0~3G),这个空间对系统中的其他进程是不可见的。最高的1GB内核空间则为所有进程以及内核所共享。另外,进程的“用户空间”也叫“地址空间”,在后面的叙述中,我们对这两个术语不再区分。
用户空间不是进程共享的,而是进程隔离的。每个进程最大都可以有3GB的用户空间。一个进程对其中一个地址的访问,与其它进程对于同一地址的访问绝不冲
突。比如,一个进程从其用户空间的地址0x1234ABCD处可以读出整数8,而另外一个进程从其用户空间的地址0x1234ABCD处可以读出整数
20,这取决于进程自身的逻辑。
因此Linux对用户空间与内核空间的划分起到了一定程度上的冲突避免。
一个进程的虚拟地址空间主要由两个数据结来描述。一个是最高层次的:mm_struct,一个是较高层次的:vm_area_structs。最高层次的mm_struct结构描述了一个进程的整个虚拟地址空间。较高层次的结构vm_area_truct描述了虚拟地址空间的一个区间(简称虚拟区)。1. MM_STRUCT结构
mm_strcut 用来描述一个进程的虚拟地址空间,在/include/linux/sched.h 中描述如下:
struct mm_struct {
struct vm_area_struct * mmap /* 指向虚拟区间(VMA)链表 */
rb_root_t mm_rb/*指向red_black树*/
struct vm_area_struct * mmap_cache/* 指向最近找到的虚拟区间*/
pgd_t * pgd /*指向进程的页目录*/
atomic_t mm_users /* 用户空间中的有多少用户*/
atomic_t mm_count /* 对"struct mm_struct"有多少引用*/
int map_count /* 虚拟区间的个数*/
struct rw_semaphore mmap_sem
spinlock_t page_table_lock /* 保护任务页表和 mm->rss */
struct list_head mmlist /*所有活动(active)mm的链表 */
unsigned long start_code, end_code, start_data, end_data
unsigned long start_brk, brk, start_stack
unsigned long arg_start, arg_end, env_start, env_end
unsigned long rss, total_vm, locked_vm
unsigned long def_flags
unsigned long cpu_vm_mask
unsigned long swap_address
unsigned dumpable:1
/* Architecture-specific MM context */
mm_context_t context
}
对该结构进一步说明如下:
在内核代码中,指向这个数据结构的变量常常是mm。
每个进程只有一个mm_struct结构,在每个进程的task_struct结构中,有一个指向该进程的结构。可以说,mm_struct结构是对整个用户空间的描述。
一个进程的虚拟空间中可能有多个虚拟区间(参见下面对vm_area_struct描述),对这些虚拟区间的组织方式有两种,当虚拟区较少时采用单链表,由mmap指针指向这个链表,当虚拟区间多时采用“红黑树(red_black
tree)”结构,由mm_rb指向这颗树。在2.4.10以前的版本中,采用的是AVL树,因为与AVL树相比,对红黑树进行 *** 作的效率更高。
因为程序中用到的地址常常具有局部性,因此,最近一次用到的虚拟区间很可能下一次还要用到,因此,把最近用到的虚拟区间结构应当放入高速缓存,这个虚拟区间就由mmap_cache指向。
指针pgt指向该进程的页目录(每个进程都有自己的页目录,注意同内核页目录的区别),当调度程序调度一个程序运行时,就将这个地址转成物理地址,并写入控制寄存器(CR3)。
由于进程的虚拟空间及其下属的虚拟区间有可能在不同的上下文中受到访问,而这些访问又必须互斥,所以在该结构中设置了用于P、V *** 作的信号量mmap_sem。此外,page_table_lock也是为类似的目的而设置。
虽然每个进程只有一个虚拟地址空间,但这个地址空间可以被别的进程来共享,如,子进程共享父进程的地址空间(也即共享mm_struct结构)。所以,用mm_user和mm_count进行计数。类型atomic_t实际上就是整数,但对这种整数的 *** 作必须是“原子”的。
另外,还描述了代码段、数据段、堆栈段、参数段以及环境段的起始地址和结束地址。这里的段是对程序的逻辑划分,与我们前面所描述的段机制是不同的。
mm_context_t是与平台相关的一个结构,对i386 几乎用处不大。
在后面对代码的分析中对有些域给予进一步说明。
2. VM_AREA_STRUCT 结构
vm_area_struct描述进程的一个虚拟地址区间,在/include/linux/mm.h中描述如下:
struct vm_area_struct
struct mm_struct * vm_mm /* 虚拟区间所在的地址空间*/
unsigned long vm_start/* 在vm_mm中的起始地址*/
unsigned long vm_end /*在vm_mm中的结束地址 */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next
pgprot_t vm_page_prot /* 对这个虚拟区间的存取权限 */
unsigned long vm_flags/* 虚拟区间的标志. */
rb_node_t vm_rb
/*
* For areas with an address space and backing store,
* one of the address_space->i_mmap{,shared} lists,
* for shm areas, the list of attaches, otherwise unused.
*/
struct vm_area_struct *vm_next_share
struct vm_area_struct **vm_pprev_share
/*对这个区间进行 *** 作的函数 */
struct vm_operations_struct * vm_ops
/* Information about our backing store: */
unsigned long vm_pgoff/* Offset (within vm_file) in PAGE_SIZE
units, *not* PAGE_CACHE_SIZE */
struct file * vm_file /* File we map to (can be NULL). */
unsigned long vm_raend/* XXX: put full readahead info here. */
void * vm_private_data/* was vm_pte (shared mem) */
}
vm_flag是描述对虚拟区间的 *** 作的标志,其定义和描述如下
标志名描述
VM_DENYWRITE 在这个区间映射一个打开后不能用来写的文件。
VM_EXEC 页可以被执行。
VM_EXECUTABLE 页含有可执行代码。
VM_GROWSDOWN 这个区间可以向低地址扩展。
VM_GROWSUP 这个区间可以向高地址扩展。
VM_IO 这个区间映射一个设备的I/O地址空间。
VM_LOCKED 页被锁住不能被交换出去。
VM_MAYEXEC VM_EXEC 标志可以被设置。
VM_MAYREAD VM_READ 标志可以被设置。
VM_MAYSHAREVM_SHARE 标志可以被设置。
VM_MAYWRITEVM_WRITE 标志可以被设置。
VM_READ 页是可读的。
VM_SHARED 页可以被多个进程共享。
VM_SHM页用于IPC共享内存。
VM_WRITE页是可写的。
较高层次的结构vm_area_structs是由双向链表连接起来的,它们是按虚地址的降顺序来排列的,每个这样的结构都对应描述一个相邻的地址空间范围。之所以这样分割,是因为每个虚拟区间可能来源不同,有的可能来自可执行映象,有的可能来自共享库,而有的则可能是动态分配的内存区,所以对每一个由vm_area_structs结构所描述的区间的处理 *** 作和它前后范围的处理 *** 作不同。因此Linux
把虚拟内存分割管理,并利用了虚拟内存处理例程(vm_ops)来抽象对不同来源虚拟内存的处理方法。不同的虚拟区间其处理 *** 作可能不同,Linux在这里利用了面向对象的思想,即把一个虚拟区间看成一个对象,用vm_area_structs描述了这个对象的属性,其中的vm_operation结构描述了在这个对象上的 *** 作,其定义在/include/linux/mm.h中:
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area)
void (*close)(struct vm_area_struct * area)
struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused)
}
vm_operations结构中包含的是函数指针;其中,open、close分别用于虚拟区间的打开、关闭,而nopage用于当虚存页面不在物理内存而引起的“缺页异常”时所应该调用的函数。
3.红黑树结构
Linux内核从2.4.10开始,对虚拟区的组织不再采用AVL树,而是采用红黑树,这也是出于效率的考虑,虽然AVL树和红黑树很类似,但在插入和删除节点方面,采用红黑树的性能更好一些,下面对红黑树给予简单介绍。
一颗红黑树是具有以下特点的二叉树:
每个节点着有颜色,或者为红,或者为黑
根节点为黑色
如果一个节点为红色,那么它的子节点必须为黑色
从一个节点到叶子节点上的所有路径都包含有相同的黑色节点数
我们知道现在 *** 作系统都是采用虚拟存储器,那么对32位 *** 作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。 *** 心系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接 *** 作内核,保证内核的安全, *** 心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux *** 作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。每个进程可以通过系统调用进入内核,因此,Linux内核由系统内的所有进程共享。于是,从具体进程的角度来看,每个进程可以拥有4G字节的虚拟空间需要注意的细节问题:
(1) 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中。
(2) Linux使用两级保护机制:0级供内核使用,3级供用户程序使用。
内核态与用户态:
(1)当一个任务(进程)执行系统调用而陷入内核代码中执行时,称进程处于内核运行态(内核态)。此时处理器处于特权级最高的(0级)内核代码中执行。当进程处于内核态时,执行的内核代码会使用当前进程的内核栈。每个进程都有自己的内核栈。
(2)当进程在执行用户自己的代码时,则称其处于用户运行态(用户态)。此时处理器在特权级最低的(3级)用户代码中运行。当正在执行用户程序而突然被中断程序中断时,此时用户程序也可以象征性地称为处于进程的内核态。因为中断处理程序将使用当前进程的内核栈。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)