简述缺页中断和一般中断的区别

简述缺页中断和一般中断的区别,第1张

1、范围不同

一般中断只需要保护现场,然后就直接跳到需及时处理的地方。

缺页中断除了保护现场之外,还要判断内存中是否有足够的空间存储所需的页或段,然后再把所需页调进来再使用。

2、结果不同

一般中断在处理完之后返回时,执行下一条指令。

缺页中断返回时,执行产生中断的那一条指令。

3、次数不同

在指令执行期间产生和处理缺页中断信号,一条指令在执行期间,可能产生多次缺页中断。

一般中断只产生一次,发生中断指令后转入相应处理程序进行处理,恢复被中断程序现场。

扩展资料

产生缺页中断的几种情况

1、当内存管理单元(MMU)中确实没有创建虚拟物理页映射关系,并且在该虚拟地址之后再没有当前进程的线性区(vma)的时候,这将杀掉该进程。

2、当MMU中确实没有创建虚拟页物理页映射关系,并且在该虚拟地址之后存在当前进程的线性区vma的时候,这很可能是缺页中断,并且可能是栈溢出导致的缺页中断。

3、当使用malloc/mmap等希望访问物理空间的库函数/系统调用后,由于linux并未真正给新创建的vma映射物理页,此时若先进行写 *** 作,将和2产生缺页中断的情况一样;若先进行读 *** 作虽然也会产生缺页异常,将被映射给默认的零页,等再进行写 *** 作时,仍会产生缺页中断,这次必须分配1物理页了,进入写时复制的流程。

4、当使用fork等系统调用创建子进程时,子进程不论有无自己的vma,它的vma都有对于物理页的映射,但它们共同映射的这些物理页属性为只读,即linux并未给子进程真正分配物理页,当父子进程任何一方要写相应物理页时,导致缺页中断的写时复制。

以32位的Linux系统为例,每个进程独立拥有4GB的虚拟地址空间,根据局部性原理没有必要也不可能为每个进程分配4GB的物理地址空间。

64位系统也是一样的道理,只不过空间寻址范围大了很多很多倍,进程的虚拟地址空间会分为几个部分:

实际上只有程序运行时用到了才去内存中寻找虚拟地址对应的页帧,找不到才可能进行分配,这就是内存的惰性(延时)分配机制。

对于一个运行中的进程来说,不是所有的虚拟地址在物理内存中都有对应的页,如图展示了部分虚拟地址存在对应物理页的情况:

虚拟地址空间根据固定大小一般是4KB进行划分,物理内存可以设置不同的页面大小,通常物理页大小和虚拟页大小是一样的,本文按照物理页4KB大小展开。

经过前面的分析,我们将面临一个问题: 如何将虚拟地址准确快速地映射到物理页呢?

CPU并不直接和物理内存打交道,而是把地址转换的活外包给了MMU,MMU是一种硬件电路,其速度很快,主要工作是进行内存管理,地址转换只是它承接的业务之一。

一起看看MMU是如何搞定地址转换的。

每个进程都会有自己的页表Page Table,页表存储了进程中虚拟地址到物理地址的映射关系,所以就相当于一张地图,MMU收到CPU的虚拟地址之后开始查询页表,确定是否存在映射以及读写权限是否正常,如图:

对于4GB的虚拟地址且大小为4KB页,一级页表将有2^20个表项,页表占有连续内存并且存储空间大,多级页表可以有效降低页表的存储空间以及内存连续性要求,但是多级页表同时也带来了查询效率问题。

我们以2级页表为例,MMU要先进行两次页表查询确定物理地址,在确认了权限等问题后,MMU再将这个物理地址发送到总线,内存收到之后开始读取对应地址的数据并返回。

MMU在2级页表的情况下进行了2次检索和1次读写,那么当页表变为N级时,就变成了N次检索+1次读写。

可见,页表级数越多查询的步骤越多,对于CPU来说等待时间越长,效率越低,这个问题还需要优化才行。

MMU和TLB的故事就这样开始了...

CPU觉得MMU干活虽然卖力气,但是效率有点低,不太想继续外包给它了,这一下子把MMU急坏了。

MMU于是找来了一些精通统计的朋友,经过一番研究之后发现CPU用的数据经常是一小搓,但是每次MMU都还要重复之前的步骤来检索,害,就知道埋头干活了,也得讲究方式方法呀!

找到瓶颈之后,MMU引入了新武器,江湖人称快表的TLB,别看TLB容量小,但是正式上岗之后干活还真是不含糊。

当CPU给MMU传新虚拟地址之后,MMU先去问TLB那边有没有,如果有就直接拿到物理地址发到总线给内存,齐活。

TLB容量比较小,难免发生Cache Miss,这时候MMU还有保底的老武器页表 Page Table,在页表中找到之后MMU除了把地址发到总线传给内存,还把这条映射关系给到TLB,让它记录一下刷新缓存。

TLB容量不满的时候就直接把新记录存储了,当满了的时候就开启了淘汰大法把旧记录清除掉,来保存新记录,彷佛完美解决了问题。

在TLB和Page Table加持之下,CPU感觉最近MMU比较给力了,就问MMU怎么做到的?MMU就一五一十告诉了CPU。

CPU说是个不错的路子,随后说出了自己的建议:TLB还是有点小,缓存不命中也是经常发生的,要不要搞个大的,这样存储更多访问更快?

MMU一脸苦笑说道大哥TLB很贵的,要不你给涨点外包费?话音未落,CPU就说涨工资是不可能了,这辈子都不可能了。

设想 CPU给MMU的虚拟地址在TLB和Page Table都没有找到对应的物理页帧或者权限不对,该怎么办呢?

没错,这就是缺页异常Page Fault, 它是一个由硬件中断触发的可以由软件逻辑纠正的错误

假如目标内存页在物理内存中 没有对应的页帧或者存在但无对应权限 CPU 就无法获取数据 ,这种情况下 CPU就会报告一个缺页错误

由于CPU没有数据就无法进行计算,CPU罢工了 用户进程也就出现了缺页中断 ,进程会从用户态切换到内核态,并将缺页中断交给内核的 Page Fault Handler 处理。

缺页异常并不可怕,只要CPU要的虚拟地址经过MMU的一番寻址之后没有找到或者找到后无权限,就会出现缺页异常,因此触发异常后的处理流程将是重点内容。

缺页中断会交给PageFaultHandler处理,其根据缺页中断的不同类型会进行不同的处理:

不同类型的Page Fault出现的原因也不一样,常见的几种原因包括:

本文粗浅地和大家一起学习了Page Fault的相关知识点,包括Linux虚拟地址和物理地址的关系、CPU获取内存数据的过程、MMU和TLB&页表的协同配合、缺页异常产生的原因和分类处理。

本文并没有对MMU的内部机制、内核态&用户态缺页异常、缺页异常处理函数等内容进行展开,主要是因为这部分内容相对晦涩,还得靠自己深入研究。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/6245360.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-19
下一篇 2023-03-19

发表评论

登录后才能评论

评论列表(0条)

保存