TensorFlow的优势和缺点有哪些

TensorFlow的优势和缺点有哪些,第1张

TensorFlow框架的前身是Google的DistBelief V2,是谷歌大脑项目的深度网络工具库,一些人认为TensorFlow是借鉴Theano重构的。Tensorflow一经开源,马上引起了大量开发者的跟进。Tensorflow广泛支持包括图像、手写字、语音识别、预测和自然语言处理等大量功能。TensorFlow遵循Apache 2.0开源协议。TensorFlow在2017年2月15号发布了其1.0版本,这个版本是对先前八个不完善版本的整合。以下是TensorFlow取得成功的一些列原因:TensorFLow提供这些工具:TensorBroad是一个设计优良的可视化网络构建和展示工具;TensorFlow Serving通过保持相同的服务器架构和API,可以方便地配置新算法和环境。TensorFlow Serving 还提供开箱即用的模型,并且可以轻松扩展以支持其他的模型和数据。TensorFlow编程接口包括Python和C++,Java,Go,R和Haskell语言的接口也在alpha版中支持。另外,TensorFlow还支持谷歌和亚马逊的云环境。TensorFlow的0.12版本支持Windows 7, 8, Server 2016系统。由于采用C++ Eigen库,TensorFlow类库可以在ARM架构平台上编译和优化。这意味着你可以不需要额外实现模型解码器或者Python解释器就可以在多种服务器和移动设备上部署训练好的模型。TensorFlow提供细致的网络层使用户可以构建新的复杂的层结构而不需要自己从底层实现它们。子图允许用户查看和恢复图的任意边的数据。这对复杂计算的Debug非常有用。分布式TensorFlow在0.8版本推出,提供了并行计算支持,可以让模型的不同 部分在不同设备上并行训练。TensorFlow在斯坦福大学,伯克利学院,多伦多大学和Udacity(2016年3月成立的在线学校)均有教学。TensorFlow的缺点有:每个计算流必须构建成图,没有符号循环,这样使得一些计算变得困难;没有三维卷积,因此无法做视频识别;即便已经比原有版本(0.5)快了58倍,但执行性能仍然不及它的竞争者。

深度学习框架是一种为了深度学习开发而生的工具,库和预训练模型等资源的总和。有了这种框架,看似复杂神秘的深度学习模型开发被大大简化,成为AI开发者的必用利器。

目前,TensorFlow和PyTorch明显领先,其他框架势微。如下图所示,基于TensorFlow和PyTorch的开源项目,明显领先其它框架。注:Keras不算完整的AI框架,另外KerasAPI已经成为TF2.0的高层API。

TensorFlow 是市场需求最多,也是增长最快的框架,它的领先地位不会在短期内被颠覆。 PyTorch 也在迅速发展,尤其在学术界,越来越多的论文代码基于PyTorch。它在工作列表中的大量增加证明了其使用和需求的增加。

TensorFlow和PyTorch两种框架未来相当时间内会趋同共存。现在PyTorch的在学术界广泛采用;而TensorFlow依赖强大的部署能力,是应用首选。未来TensorFlow2.0大大提高易用性(集成Keras,支持动态库EagerExecution等)PyTorch也在利用ONNX提高部署能力。TensorFlow和PyTorch会越来越趋同。

TensorFlow和PyTorch已是未来几年最主流的深度学习框架。围绕这两种框架的软,硬件,和开发者生态将会迅猛发展,新框架越来越难以成长,其他框架差距越来越大。

人群密度计数是指估计图像或视频中人群的数量、密度或分布,它是智能视频监控分析领域的关键问题和研究热点,也是后续行为分析、拥塞分析、异常检测和事件检测等高级视频处理任务的基础。随着城市化进程的快速推进,城市人口数量急剧增长,导致各种人员高度聚集的社会活动频繁发生,如果管控不当,极易发生拥挤踩踏事故。

例如上海“12.31”外滩踩踏事故中,由于现场管理和应对措施不当,引发了人群拥挤和摔倒,最终造成了重大人员伤亡的严重后果。如果有精度良好的人群计数系统实时统计相关场所的人群数量、分布或密度等信息,及时发现人群拥挤和异常行为并进行预警,以便采取措施进行疏导,就可以避免悲剧的发生。性能良好的人群计数算法也可以迁移到其他目标计数领域,如显微图片中的细菌与细胞计数、拥挤道路上的汽车计数等,拓展人群计数算法的应用范围.因此,人群计数方法的研究有着重要的现实意义和应用价值。

显然的是传统的人群计数方法具有一定局限性,无法从图像中提取更抽象的有助于完成人群计数任务的语义特征,使得面对背景复杂、人群密集、遮挡严重的场景时,计数精度无法满足实际需求。近年来,深度学习技术发展迅猛,在许多计算机视觉任务中得到成功应用,促使研究人员开始探索基于卷积神经网络的人群计数办法.相比于传统方法,基于CNN的人群计数方法在处理场景适应性、尺度多样性等问题时表现更优。而且由于特征是自学习的,不需要人工选取,可以显著提升计数效果,因此已经成为当前人群计数领域的研究热点。使用CNN的人群计数方法主要分为直接回归计数法和密度图估计法2类。直接回归法只需向CNN送入人群图片,就可以直接输出人群数量,适用于人群稀疏场景。在密度图法中,CNN输出的是人群密度图,再以数学积分求和的方式计算出人数.这类方法性能的好坏一定程度上依赖于密度图的质量。为了提升密度图质量,会引入新的损失函数来提高密度图的清晰度和准确度。

故本项目通过采用深度学习方法获取人群密度图已估计人群数量,使用python语言搭建MSCNN网络实现实时生成人群密度图以达到估计人群数量的目的。其最终实现效果如下图可见:

基本介绍

1.1 环境要求

本次环境使用的是python3.6.5+windows平台。主要用的库有:

opencv模块。在计算机视觉项目的开发中,opencv作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等 *** 作系统上,能够快速的实现一些图像处理和识别的任务。

numpy模块。numpy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效得多(该结构也可以用来表示矩阵。

pillow模块。PIL是理想的图像存档和批处理应用程序。您可以使用库创建缩略图,在文件格式、打印图像等之间进行转换。它提供了广泛的文件格式支持、高效的内部表示和相当强大的图像处理功能。核心图像库是为快速访问以几种基本像素格式存储的数据而设计的。为通用图像处理工具提供了坚实的基础。

keras模块。Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。

1.2 MSCNN网络介绍

MSCNN作为多尺度卷积神经网络与传统机器学习算法相比,深度学习模型能更有效地从高维复杂输入中自动提取特征。卷积神经网络是应用最广泛的深度学习模型之一,通过卷积、池化等 *** 作提取原始数据的特征,并通过权连接层输出模型的计算结果。其中,卷积核的大小在一定程度上影响着特征提取的效果和模型的故障识别能力。MSCNN是一种改进的卷积神经网络,通过不同大小的卷积核从多尺度挖掘特征信息,有效解决了传统CNN模型卷积核的自适应选择问题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7142059.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存